Skip to main content

Comparing Simultaneous Multi-slice Diffusion Acquisitions

  • Conference paper
  • First Online:

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Diffusion magnetic resonance imaging (dMRI) is an important tool that allows non-invasive investigation of the neural architecture of the brain. Advanced dMRI protocols typically require a large number of measurements for accurately tracing the fiber bundles and estimating the diffusion properties (such as, FA). However, the acquisition time of these sequences is prohibitively large for pediatric as well as patients with certain types of brain disorders (such as, dementia). Thus, fast echo-planar imaging (EPI) acquisition sequences were proposed by the authors in [6, 16], which acquired multiple slices simultaneously to reduce scan time. The scan time in such cases drops proportionately to the number of simultaneous slice acquisitions (which we denote by R). While preliminary results in [6, 16] showed good reproducibility, yet the effect of simultaneous acquisitions on long range fiber connectivity and diffusion measures such as FA, is not known. In this work, we use multi-tensor based fiber connectivity to compare data acquired on two subjects with different acceleration factors (R = 1, 2, 3). We investigate and report the reproducibility of fiber bundles and diffusion measures between these scans on two subjects with different spatial resolutions, which is quite useful while designing neuroimaging studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barmpoutis, A., Vemuri, B., Forder, J.: Fast displacement probability profile approximation from hardi using 4th-order tensors. In: ISBI, Paris, pp. 911–914 (2008)

    Google Scholar 

  2. Baumgartner, C., Michailovich, O., Levitt, J., Pasternak, O., Bouix, S., Westin, C., Rathi, Y.: A unified tractography framework for comparing diffusion models on clinical scans. In: CDMRI Workshop – MICCAI, Nice (2012)

    Google Scholar 

  3. Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  4. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)

    Article  Google Scholar 

  5. Durrleman, S., Fillard, P., Pennec, X., Trouvé, A., Ayache, N.: Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage 55(3), 1073–1090 (2011)

    Article  Google Scholar 

  6. Feinberg, D., Moeller, S., Smith, S., Auerbach, E., Ramanna, S., Glasser, M., Miller, K., Ugurbil, K., Yacoub, E.: Multiplexed echo planar imaging for sub-second whole brain fMRI and fast diffusion imaging. PLoS One 5(12), e15710 (2010)

    Article  Google Scholar 

  7. Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (grappa). Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  8. Jenkinson, M., Smith, S., et al.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    Article  Google Scholar 

  9. Kailath, T.: The divergence and bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15(1), 52–60 (1967)

    Article  Google Scholar 

  10. Malcolm, J.G., Shenton, M.E., Rathi, Y.: Filtered multi-tensor tractography. IEEE Trans. Med. Imaging 29, 1664–1675 (2010). doi:10.1109/TMI.2010.2048121

    Article  Google Scholar 

  11. Merlet, S., Caruyer, E., Ghosh, A., Deriche, R., et al.: Parametric dictionary learning in diffusion MRI. In: HARDI Reconstruction Workshop-ISBI-International Symposium on Biomedical Imaging, Barcelona (2012)

    Google Scholar 

  12. Michailovich, O., Rathi, Y., Dolui, S.: Spatially regularized compressed sensing for high angular resolution diffusion imaging. Med. Imaging, IEEE Trans. 30(5), 1100–1115 (2011)

    Google Scholar 

  13. Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion mr signal in brain white matter: a taxonomy and comparison. NeuroImage 59(3), 2241–2254 (2012)

    Article  Google Scholar 

  14. Pasternak, O., Sochen, N., Gur, Y., Intrator, N., Assaf, Y.: Free water elimination and mapping from diffusion MRI. MRM 62(3), 717–730 (2009)

    Article  Google Scholar 

  15. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. HBM 31(5), 798–819 (2009)

    Article  Google Scholar 

  16. Setsompop, K., Gagoski, B.A., Polimeni, J.R., Witzel, T., Wedeen, V.J., Wald, L.L.: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 67(5), 1210–1224 (2011)

    Article  Google Scholar 

  17. Tuch, D., Reese, T., Wiegell, M., Wedeen, V.: Diffusion MRI of complex neural architecture. Neuron 40, 885–895 (2003)

    Article  Google Scholar 

  18. Vollmar, C., O’Muircheartaigh, J., Barker, G.J., Symms, M.R., Thompson, P., Kumari, V., Duncan, J.S., Richardson, M.P., Koepp, M.J.: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 t scanners. Neuroimage 51(4), 1384–1394 (2010)

    Google Scholar 

  19. Wassermann, D., Bloy, L., Kanterakis, E., Verma, R., Deriche, R.: Unsupervised white matter fiber clustering and tract probability map generation: applications of a gaussian process for white matter fibers. NeuroImage 51(1), 228 (2010)

    Article  Google Scholar 

  20. Wedeen, V., Hagmann, P., Tseng, W., Reese, T., Weisskoff, R.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by NIH grants: R01MH097979 (YR), R01MH074794 (CFW), P41RR013218, P41EB015902 and Swedish VR grant 2012–3682(CFW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Rathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rathi, Y., Gagoski, B., Setsompop, K., Grant, P.E., Westin, CF. (2014). Comparing Simultaneous Multi-slice Diffusion Acquisitions. In: Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O'Donnell, L., Panagiotaki, E. (eds) Computational Diffusion MRI and Brain Connectivity. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-02475-2_1

Download citation

Publish with us

Policies and ethics