Skip to main content

A Framework for ODF Inference by Using Fiber Tract Adaptive MPG Selection

  • Conference paper
  • First Online:
Computational Diffusion MRI and Brain Connectivity

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1794 Accesses

Abstract

The authors propose a method that selects a set of motion probing gradient (MPG) directions, which is adapted for measuring fiber tracts in some specific region of interest (ROI) with smaller number of MPGs. Given a training set of diffusion magnetic resonance (MR) images, the method selects the set of MPG directions by minimizing a cost function, which represents the square errors of the reconstructed oriented distribution functions (ODFs). This selection of MPGs is a combinatorial optimization problem, and a simulated annealing scheme is employed for selecting the MPGs. Experimental results demonstrated that the set of MPG directions selected by our proposed method reconstructed the ODFs more accurately than an existing method based on spherical harmonics and on greedy optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masutani, Y., Itoh, K., Suzuki, Y., Abe, O., Ohtomo, K.: Desighning tract-adaptive MPG sets for faster acquisition of HARDI data. In: Proceeding of Computer Assisted Radiology and Surgery (CARS), Geneva, 2010

    Google Scholar 

  2. Michailovich, O., Rathi, Y.: Fast and accurate reconstruction of HARDI data using compressed sensing. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), Beijing, 2010, pp. 607–614

    Google Scholar 

  3. Moeller, S., et al.: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63(5), 1144–1153 (2010)

    Article  Google Scholar 

  4. Feinberg, D.A., Setsompop, K.: Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J. Magn. Reson. 229, 90–100 (2013)

    Article  Google Scholar 

  5. Uğurbil, K., et al.: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80, 80–104 (2013)

    Article  Google Scholar 

  6. Merlet, S., et al.: Compressed sensing for accelerated EAP recovery in diffusion MRI. In: Proceedings of MICCAI 2010 Workshop on Computational Diffusion MRI (CDMRI), Beijing, pp. 14–25 (2010)

    Google Scholar 

  7. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neurotechnique 40, 885–895 (2003)

    Google Scholar 

  8. Rowe, M., Zhang, H., Alexander, D.: Utilising measures of fiber dispersion in white matter tractography. In: Proceedings of MICCAI 2012 Workshop on Computational Diffusion MRI (CDMRI), Nice, 2012, pp. 2–12

    Google Scholar 

  9. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)

    Article  MathSciNet  Google Scholar 

  10. Freeden, W., Gervens, T., Schreiner, M.: Constructive approximation on the sphere: with applications to geomathematics. Clarendon, Oxford (1998)

    MATH  Google Scholar 

  11. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral Filtering: Theory and Applications. Foundations and Trends in Computer Graphics and Vision. Now Publishing, Hanover (2009)

    Google Scholar 

  12. Fillard, P., et al.: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56, 220–234 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekata Hontani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hontani, H., Iwamoto, K., Masutani, Y. (2014). A Framework for ODF Inference by Using Fiber Tract Adaptive MPG Selection. In: Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O'Donnell, L., Panagiotaki, E. (eds) Computational Diffusion MRI and Brain Connectivity. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-02475-2_7

Download citation

Publish with us

Policies and ethics