Abstract
We introduce constraint relationships as a means to define qualitative preferences on the constraints of soft constraint problems. The approach is aimed at constraint satisfaction problems (CSPs) with a high number of constraints that make exact preference quantizations hard to maintain manually or hard to anticipate—especially if constraints or preferences change at runtime or are extracted from natural language text. Modelers express preferences over the satisfaction of constraints with a clear semantics regarding preferred tuples without assigning priorities to concrete domain values. We show how a CSP including a set of constraint relationships can linearly be transformed into a k-weighted CSP as a representative of c-semirings that is solved by widely available constraint solvers and compare it with existing techniques. We demonstrate the approach by using a typical example of a dynamic and interactive scheduling problem in AI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andréka, H., Ryan, M., Schobbens, P.Y.: Operators and Laws for Combining Preference Relations. J. Log. Comput. 12(1), 13–53 (2002).
Bessière, C.: Arc-Consistency in Dynamic Constraint Satisfaction Problems. In: T.L. Dean, K. McKeown (eds.) Proc. \(9^\text{ th }\) Nat. Conf. Artificial Intelligence (AAAI’91), pp. 221–226. AAAI Press (1991).
Bistarelli, S., Montanari, U., Rossi, F.: Constraint Solving over Semirings. In: Proc. \(14^\text{ th }\) Int. Joint Conf. Artificial Intelligence (IJCAI’95), vol. 1, pp. 624–630. Morgan Kaufmann (1995).
Borning, A., Freeman-Benson, B., Wilson, M.: Constraint Hierarchies. LISP Symb. Comp. 5, 223–270 (1992).
Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif. Intell. Res. 21, 135–191 (2004).
Boutilier, C., Brafman, R.I., Geib, C., Poole, D.: A Constraint-based Approach to Preference Elicitation and Decision Making. In: AAAI Spring Symp. Qualitative Decision Theory, pp. 19–28 (1997).
Brafman, R., Domshlak, C.: Preference Handling - An Introductory Tutorial. AI Magazine 30(1), 58–86 (2009).
Dechter, R., Dechter, A.: Belief Maintenance in Dynamic Constraint Networks. In: H.E. Shrobe, T.M. Mitchell, R.G. Smith (eds.) Proc. \(7^\text{ th }\) Nat. Conf. Artificial Intelligence (AAAI’88), pp. 37–42. AAAI Press (1988).
Doyle, J., McGeachie, M.: Exercising Qualitative Control in Autonomous Adaptive Survivable Systems. In: Proc. \(2^\text{ nd }\) Int. Conf. Self-adaptive software: Applications (IWSAS’01), Lect. Notes Comp. Sci., vol. 2614, pp. 158–170. Springer (2003).
Dubois, D., Fargier, H., Prade, H.: The Calculus of Fuzzy Restrictions as a Basis for Flexible Constraint Satisfaction. In: Proc. \(2^\text{ nd }\) IEEE Int. Conf. Fuzzy Systems, vol. 2, pp. 1131–1136 (1993).
Freuder, E.C., Wallace, R.J.: Partial Constraint Satisfaction. Artif. Intell. 58(1–3), 21–70 (1992).
Gelain, M., Pini, M.S., Rossi, F., Venable, K.B.: Dealing with Incomplete Preferences in Soft Constraint Problems. In: C. Bessière (ed.) Proc. \(13^\text{ th }\) Int. Conf. Principles and Practice of Constraint Programming (CP’07), Lect. Notes Comp. Sci., vol. 4741, pp. 286–300. Springer (2007).
Jampel, M.: A Brief Overview of Over-constrained Systems. In: M. Jampel, E. Freuder, M. Maher (eds.) Over-Constrained Systems, Lect. Notes Comp. Sci., vol. 1106, pp. 1–22. Springer (1996).
Larrosa, J.: Node and Arc Consistency in Weighted CSP. In: R. Dechter, R.S. Sutton (eds.) Proc. \(18^\text{ th }\) Nat. Conf. Artificial Intelligence (AAAI’02), pp. 48–53. AAAI Press (2002).
Meseguer, P., Rossi, F., Schiex, T.: Soft Constraints. In: F. Rossi, P. van Beek, T. Walsh (eds.) Handbook of Constraint Programming, chap. 9. Elsevier (2006).
Mittal, S., Falkenhainer, B.: Dynamic Constraint Satisfaction. In: H.E. Shrobe, T.G. Dietterich, W.R. Swartout (eds.) Proc. \(8^\text{ th }\) Nat. Conf. Artificial Intelligence (AAAI’90), vol. 1, pp. 25–32. AAAI Press (1990).
Rossi, F.: Preferences, Constraints, Uncertainty, and Multi-Agent Scenarios. In: Proc. Int. Symp. Artificial Intelligence and Mathematics (ISAIM’08) (2008).
Rossi, F., Venable, K.B., Walsh, T.: Preferences in Constraint Satisfaction and Optimization. AI Mag. 29(4), 58–68 (2008).
Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems: Hard and Easy Problems. In: Proc. \(14^\text{ th }\) Int. Joint Conf. Artificial Intelligence (IJCAI’95), vol. 1, pp. 631–639. Morgan Kaufmann (1995).
Shapiro, L.G., Haralick, R.M.: Structural descriptions and inexact matching. IEEE Trans. Pattern Analysis and, Machine Intelligence PAMI-3(5), 504–519 (1981).
Steghöfer, J.P., Anders, G., Siefert, F., Reif, W.: A System of Systems Approach to the Evolutionary Transformation of Power Management Systems. In: Proc. INFORMATIK 2013 Wsh. “Smart Grids”, Lect. Notes Inform. Bonner Köllen Verlag (2013).
Acknowledgments
This work has been partially funded by the German Research Foundation (DFG) in the research unit FOR 1085 “OC Trust–Trustworthy Organic Computing Systems”. We would like to thank María Victoria Cengarle for fruitful discussions and the anonymous reviewers for the constructive feedback that led to an improvement of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Schiendorfer, A., Steghöfer, JP., Knapp, A., Nafz, F., Reif, W. (2013). Constraint Relationships for Soft Constraints. In: Bramer, M., Petridis, M. (eds) Research and Development in Intelligent Systems XXX. SGAI 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-02621-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-02621-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02620-6
Online ISBN: 978-3-319-02621-3
eBook Packages: Computer ScienceComputer Science (R0)