Skip to main content

Particulate Matter Concentration Estimation from Satellite Aerosol and Meteorological Parameters: Data-Driven Approaches

  • Conference paper
Knowledge and Systems Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 244))

Abstract

Estimation of Particulate Matter concentration (PM1, PM2.5 and PM10) from aerosol product derived from satellite images and meteorological parameters brings a great advantage in air pollution monitoring since observation range is no longer limited around ground stations and estimation accuracy will be increased significantly. In this article, we investigate the application of Multiple Linear Regression (MLR) and Support Vector Regression (SVR) to make empirical data models for PM1/2.5/10 estimation from satellite- and ground-based data. Experiments, which are carried out on data recorded in two year over Hanoi - Vietnam, not only indicate a case study of regional modeling but also present comparison of performance between a widely used technique (MLR) and an advanced method (SVR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Global Climate Observing System Essential Climate Variables, http://gosic.org/ios/MATRICESECVECV-matrix.htm

  2. Balaguer, N.C.: Combining models and monitoring. A survey to elicit expert opinion on the spatial representativeness of ground based monitoring data. Fairmode activity for WG2-SG1 (2012)

    Google Scholar 

  3. Kaufman, Y.J., Tanre, D.: Algorithm for remote sensing of tropospheric aerosol from modis. In: MODIS ATBD (1997)

    Google Scholar 

  4. Remer, L.A., Tanré, D., Kaufman, Y.J.: Algorithmfor remote sensing of tropospheric aerosol from MODIS: Collection 5. In: MODIS ATBD (2004)

    Google Scholar 

  5. Nguyen, T., Mantovani, S., Bottoni, M.: Estimation of Aerosol and Air Quality Fields with PMMAPPER, An Optical Multispectral Data Processing Package. In: ISPRS TC VII Symposium 100 Years ISPRS-Advancing Remote Sensing Science, vol. XXXVIII(7A), pp. 257–261 (2010)

    Google Scholar 

  6. Campalani, P., Nguyen, T.N.T., Mantovani, S., Bottoni, M., Mazzini, G.: Validation of PM MAPPER aerosol optical thickness retrievals at 1x1 km2 of spatial resolution. In: The 19th International Conference on Proceeding of Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–5 (2011)

    Google Scholar 

  7. Chu, D.A., Kaufman, Y.J., Zibordi, G., Chern, J.D., Mao, J., Li, C., Holben, B.N.: Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research Atmospheres 108(D21), 4661 (2003)

    Article  Google Scholar 

  8. Wang, J., Chirstopher, S.A.: Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implication for air quality studies. Geophysical Research Letter 30(21), 2095 (2003)

    Article  Google Scholar 

  9. Engel-Cox, J.A., Holloman, C.H., Coutant, B.W., Hoff, R.M.: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmospheric Environment 38, 2495–2509 (2004)

    Article  Google Scholar 

  10. Kacenelenbogen, M., Leon, J.F., Chiapello, I., Tanre, D.: Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data. Atmospheric Chemistry and Physics 6, 4843–4849 (2006)

    Article  Google Scholar 

  11. Pelletier, B., Santer, R., Vidot, J.: Retrieving of particulate matter from optical measurements: A semiparametric approach. Journal of Geophysical Research: Atmospheres 112(D6208) (2007)

    Google Scholar 

  12. Schaap, M., Apituley, A., Timmermans, R.M.A., Koelemeijer, R.B.A., Leeuw, G.D.: Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmospheric Chemistry and Physics 9, 909–925 (2009)

    Article  Google Scholar 

  13. Gupta, P., Christopher, S.A., Wang, J., Gehrig, R., Lee, Y., Kumar, N.: Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment 40, 5880–5892 (2006)

    Article  Google Scholar 

  14. Gupta, P., Christopher, S.A.: Seven year particulate matter air quality assessment from surface and satellite measurements. Atmospheric Chemistry and Physics 8, 3311–3324 (2008)

    Article  Google Scholar 

  15. Gupta, P., Christopher, S.A.: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Journal of Geophysical Research: Atmospheres 114(D14205) (2009)

    Google Scholar 

  16. Gupta, P., Christopher, S.A.: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: A neural network approach. Journal of Geophysical Research: Atmospheres 114(D20205) (2009)

    Google Scholar 

  17. Zha, Y., Gao, J., Jiang, J., Lu, H., Huang, J.: Monitoring of urban air pollution from MODIS aerosol data: effect of meteorological parameters. Tellus B 62(2), 109–116 (2010)

    Article  Google Scholar 

  18. Lee, H.J., Liu, Y., Coull, B.A., Schwartz, J., Koutrakis, P.: A novel calibration ap-proach of MODIS AOD data to predict PM2.5 concentrations. Atmospheric Chemistry and Physics 11, 7991–8002 (2011)

    Article  Google Scholar 

  19. Yap, X.Q., Hashim, M.: A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmospheric Chemistry and Physics 13, 3517–3526 (2013)

    Article  Google Scholar 

  20. Yahi, H., Santer, R., Weill, A., Crepon, M., Thiria, S.: Exploratory study for estimating atmospheric low level particle pollution based on vertical integrated optical measurements. Atmospheric Environment 45, 3891–3902 (2011)

    Article  Google Scholar 

  21. Hirtl, M., Mantovani, S., Krger, B.C., Triebnig, G., Flandorfer, C.: AQA-PM: Extension of the Air-Quality model for Austria with satellite based Particulate Matter estimates. In: European Geosciences Union, General Assembly 2013, Austria (2013)

    Google Scholar 

  22. Ichoku, C., Chu, D.A., Mattoo, S., Kaufiman, Y.J.: A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophysical Research Letter 29(12), 1616 (2002)

    Article  Google Scholar 

  23. Vapnik, V.: The nature of statistical learning theory. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  24. Chang, C., Lin, C.: LIBSVM: A Library for Support Vector Machines (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Nhat Thanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, T.N.T., Ta, V.C., Le, T.H., Mantovani, S. (2014). Particulate Matter Concentration Estimation from Satellite Aerosol and Meteorological Parameters: Data-Driven Approaches. In: Huynh, V., Denoeux, T., Tran, D., Le, A., Pham, S. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-319-02741-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02741-8_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02740-1

  • Online ISBN: 978-3-319-02741-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics