Skip to main content

Multi-Scale Local Spatial Binary Patterns for Content-Based Image Retrieval

  • Conference paper
Active Media Technology (AMT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8210))

Included in the following conference series:

Abstract

Content-based image retrieval (CBIR) has been widely studied in recent years. CBIR usually employs feature descriptors to describe the concerned characters of images, such as geometric descriptor and texture descriptor. Many texture descriptors in texture analysis and image retrieval are based on the so-called Local Binary Pattern (LBP) technique. However, LBP lacks of the spatial distribution information of texture features. In this paper, we aim at improving the traditional LBP and present a novel texture feature descriptor for CBIR called Multi-Scale Local Spatial Binary Patterns (MLSBP). MLSBP integrates LBP with spatial distribution information of gray-level variation direction and gray-level variation between the referenced pixel and its neighbors. In addition, MLSBP extracts the texture features from images on different scale levels. We conduct experiments to compare the performance of MLSBP with five competitors including LBP, Uniform LBP (ULBP), Completed LBP (CLBP), Local Ternary Patterns (LTP), and Local Tetra Patterns (LTrP). Also three benchmark image databases are used in the measurement, which are the Bradotz Texture Database (DB1), the MIT VisTex Database (DB2), and the Corel 1000 Database (DB3). The experimental results show that MLSBP is superior to the competitive algorithms in terms of precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (CSUR) 40(2), 5 (2008)

    Article  Google Scholar 

  2. Liu, G.-H., Zhang, L., Hou, Y.-K., Li, Z.-Y., Yang, J.-Y.: Image retrieval based on multi-texton histogram. Pattern Recognition 43(7), 2380–2389 (2010)

    Article  MATH  Google Scholar 

  3. Li, W., Duan, L., Xu, D., Tsang, I.W.-H.: Text-based image retrieval using progressive multi-instance learning. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2049–2055. IEEE (2011)

    Google Scholar 

  4. Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognition 40(1), 262–282 (2007)

    Article  MATH  Google Scholar 

  5. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  6. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  7. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  8. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Transactions on Image Processing 21(5), 2874–2886 (2012)

    Article  MathSciNet  Google Scholar 

  10. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1996)

    Google Scholar 

  11. Corel 10000 image database, http://wang.ist.psu.edu/docs/related.shtml

  12. MIT Vision and Modeling Group, Cambridge, Vision texture, http://vismod.media.mit.edu/pub/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Xia, Y., Wan, S., Jin, P., Yue, L. (2013). Multi-Scale Local Spatial Binary Patterns for Content-Based Image Retrieval. In: Yoshida, T., Kou, G., Skowron, A., Cao, J., Hacid, H., Zhong, N. (eds) Active Media Technology. AMT 2013. Lecture Notes in Computer Science, vol 8210. Springer, Cham. https://doi.org/10.1007/978-3-319-02750-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02750-0_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02749-4

  • Online ISBN: 978-3-319-02750-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics