Skip to main content

Acquisition of Agronomic Images with Sufficient Quality by Automatic Exposure Time Control and Histogram Matching

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2013)

Abstract

Agronomic images in Precision Agriculture are most times used for crop lines detection and weeds identification; both are a key issue because specific treatments or guidance require high accuracy. Agricultural images are captured in outdoor scenarios, always under uncontrolled illumination. CCD-based cameras, acquiring these images, need a specific control to acquire images of sufficient quality for greenness identification from which the crop lines and weeds are to be extracted. This paper proposes a procedure to achieve images with sufficient quality by controlling the exposure time based on image histogram analysis, completed with histogram matching. The performance of the proposed procedure is verified against testing images.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02895-8_64

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. López-Granados, F.: Weed detection for site-specific weed management: mapping and real-time approaches. Weed Research 51, 1–11 (2011)

    Article  Google Scholar 

  2. Romeo, J., Pajares, G., Montalvo, M., Guerrero, J.M., Guijarro, M., Ribeiro, A.: Crop Row Detection in Maize Fields Inspired on the Human Visual Perception. The Scientific World Journal 2012, Article ID 484390, 10 pages (2012), doi:10.1100/2012/484390

    Google Scholar 

  3. Søgaard, H.T., Olsen, H.J.: Determination of crop rows by image analysis without segmentation. Computers and Electronics in Agriculture 38(2), 141–158 (2003)

    Article  Google Scholar 

  4. Hague, T., Tillett, N., Wheeler, H.: Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture 1(1), 95–113 (2006)

    Google Scholar 

  5. Slaughter, D.C., Giles, D.K., Downey, D.: Autonomous robotic weed control systems: a review. Computers and Electronics in Agriculture 61(1), 63–78 (2008)

    Article  Google Scholar 

  6. Montalvo, M., Pajares, G., Guerrero, J.M., Romeo, J., Guijarro, M., Ribeiro, A., Ruz, J.J., Cruz, J.M.: Automatic detection of crop rows in maize fields with high weeds pressure. Expert Systems Applic. 39, 11889–11897 (2012)

    Article  Google Scholar 

  7. Guerrero, J.M., Pajares, G., Montalvo, M., Romeo, J., Guijarro, M.: Support Vector Machines for crop/weeds identification in maize fields. Expert. Systems Applic. 39, 11149–11155 (2012)

    Article  Google Scholar 

  8. Montalvo, M., Guerrero, J.M., Romeo, J., Emmi, L., Guijarro, M., Pajares, G.: Automatic expert system for weeds/crops identification in images from maize fields. Expert. Systems Applic. 40, 75–82 (2013)

    Article  Google Scholar 

  9. Guerrero, J.M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., Pajares, G.: Automatic expert system based on images for accuracy crop row detection in maize fields. Expert. Systems Applic. 40, 656–664 (2013)

    Article  Google Scholar 

  10. Romeo, J., Pajares, G., Montalvo, M., Guerrero, J.M., Guijarro, M., Cruz, J.M.: A new Expert System for greenness identification in agricultural images. Expert. Systems Applic. 40, 2275–2286 (2013)

    Article  Google Scholar 

  11. Fontaine, V., Crowe, T.G.: Development of line-detection algorithms for local positioning in densely seeded crops. Canadian Biosystems Engineering 48, 7.19–7.29 (2006)

    Google Scholar 

  12. Astrand, B., Baerveldt, A.J.: A vision based row-following system for agricultural field machinery. Mechatronics 15, 251–269 (2005)

    Article  Google Scholar 

  13. Leemans, V., Destain, M.F.: Application of the Hough transform for seed row location using machine vision. Biosystems Engineering 94(3), 325–336 (2006)

    Article  Google Scholar 

  14. Romeo, J., Guerrero, J.M., Montalvo, M., Emmi, L., Guijarro, M., Gonzalez-de-Santos, P., Pajares, G.: Camera Sensor Arrangement for Crop/Weed Detection Accuracy in Agronomic Images. Sensors 13, 4348–4366 (2013)

    Article  Google Scholar 

  15. Kremens, R., Sampat, N., Venkataraman, S., Yeh, T.: System implications of implementing auto-exposure on consumer digital cameras. In: SPIE Electronic Imaging 1999 Conference, vol. 3650 (January 1999)

    Google Scholar 

  16. Jiang, T., Kuhnert, K.D., Nguyen, D., Kuhnert, L.: Multiple templates auto exposure control based on luminance histogram for onboard camera. In: Proc. IEEE Int. Conf. on Computer Science and Automation Engineering (CSAE), Shanghai, China, June 10-12, vol. 3, pp. 237–241 (2011)

    Google Scholar 

  17. Vuong, Q.K., Yun, S.H., Kim, S.: A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology. In: Proc. of the World Congress on Engineering and Computer Science (WCECS) 2008, San Francisco, USA, October 22-24 (2008)

    Google Scholar 

  18. Nourani-Vatani, N., Roberts, J.: Automatic Camera Exposure Control. In: Proc. of the Australian Conf. Robotics and Automation, Brisbane, Australia, pp. 1–6 (December 2007)

    Google Scholar 

  19. SVS-VISTEK. The Focal Point of Machine Vision (2013), http://www.svsvistek.com/ (accessed on May 1, 2013)

  20. National Instruments, http://spain.ni.com/ (accessed on May 1, 2013)

  21. Kreuznach, S.: C-Mount Lenses compact series 1, http://wwwschneiderkreuznach.com/en/industrial-solutions/lenses-and-accessories/products/ (accessed on May 1, 2013)

  22. Kreuznach, S.: Tips and Tricks (2013), http://www.schneiderkreuznach.com/en/photo-imaging/product-field/b-w-fotofilter/products/filtertypes/special-filters/486-uvir-cut/ (accessed on 1 May 1, 2013)

  23. Holub, O., Ferreira, S.T.: Quantitative histogram analysis of images. Computer Physics Communications 175, 620–623 (2006)

    Article  Google Scholar 

  24. Rosin, P.L., Ioannidis, E.: Evaluation of global image thresholding for change detection. Pattern Recognit. Lett. 24, 2345–2356 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montalvo, M., Guerrero, J.M., Romeo, J., Guijarro, M., de la Cruz, J.M., Pajares, G. (2013). Acquisition of Agronomic Images with Sufficient Quality by Automatic Exposure Time Control and Histogram Matching. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2013. Lecture Notes in Computer Science, vol 8192. Springer, Cham. https://doi.org/10.1007/978-3-319-02895-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02895-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02894-1

  • Online ISBN: 978-3-319-02895-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics