Skip to main content

Semantic Approach in Image Change Detection

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8192))

  • 3348 Accesses

Abstract

Change detection is a main issue in various domains, and especially for remote sensing purposes. Indeed, plethora of geospatial images are available and can be used to update geographical databases. In this paper, we propose a classification-based method to detect changes between a database and a more recent image. It is based both on an efficient training point selection and a hierarchical decision process. This allows to take into account the intrinsic heterogeneity of the objects and themes composing a database while limiting false detection rates. The reliability of the designed framework method is first assessed on simulated data, and then successfully applied on very high resolution satellite images and two land-cover databases.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02895-8_64

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruzzone, L., Bovolo, F.: A Novel Framework for the Design of Change-Detection Systems for Very-High-Resolution Remote Sensing Images. Proceedings of the IEEE 101(3), 609–630 (2013)

    Article  Google Scholar 

  2. Buttner, G., et al.: Corine Land Cover update 2000. Technical guidelines. European Environment Agency, Copenhagen (2002)

    Google Scholar 

  3. Champion, N., Boldo, D., Pierrot-Deseilligny, M., Stamon, G.: 2D building change detection from high resolution satellite imagery: A two-step hierarchical method based on 3D invariant primitives. PRL 31(10), 1138–1147 (2010)

    Article  Google Scholar 

  4. Demir, B., Minello, L., Bruzzone, L.: An Effective Strategy to Reduce the Labeling Cost in the Definition of Training Sets by Active Learning (2013)

    Google Scholar 

  5. Forman, G.: An extensive empirical study of feature selection metrics for text classification. JMLR 3, 1289–1305 (2003)

    MATH  Google Scholar 

  6. Gomez-Chova, L., et al.: A review of kernel methods in remote sensing data analysis. In: Optical Remote Sensing, pp. 171–206. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P.: A changedetection.net: A new change detection benchmark dataset. In: Proc. IEEE Workshop on Change Detection (CDW 2012) at CVPR 2012, Providence, RI (2012)

    Google Scholar 

  8. Le Bris, A.: Extraction of vineyards out of aerial ortho-image using texture information. In: ISPRS Annals of Photogrammetry, Remote Sensing and the Spatial Information Sciences, Melbourne, Australia (2012)

    Google Scholar 

  9. Marcal, A., Borges, J., Gomes, J., Pinto Da Costa, J.: Land cover update by supervised classification of segmented ASTER images. IJRS 26(7), 1347–1362 (2005)

    Google Scholar 

  10. Miller, O., Pikaz, A., Averbuch, A.: Objects based change detection in a pair of gray-level images. PR 38(11), 1976–1992 (2005)

    Google Scholar 

  11. Nemmour, H., Chibani, Y.: Change detector combination in remotely sensed imagery. In: Advanced Concepts for Intelligent Vision Systems Conference, August 31-September 3, pp. 373–380. ACIVS, Brussels (2004)

    Google Scholar 

  12. Petitjean, F., Inglada, J., Ganarski, P.: Satellite image time series analysis under time warping. IEEE TGRS 50(8), 3081–3095 (2012)

    Google Scholar 

  13. Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE TIP 14(3), 294–307 (2005)

    MathSciNet  Google Scholar 

  14. Robin, A., Moisan, L., Hegarat-Mascle, S.: An a-contrario approach for subpixel change detection in satellite imagery. IEEE TPAMI 32(11), 1977–1993 (2010)

    Article  Google Scholar 

  15. Schölkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization and beyond. The MIT Press (2002)

    Google Scholar 

  16. Trias-Sanz, R., Stamon, G., Louchet, J.: Using colour, texture, and hierarchical segmentation for high-resolution remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 63(2), 156–168 (2008)

    Article  Google Scholar 

  17. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. JMLR 5, 975–1005 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gressin, A., Vincent, N., Mallet, C., Paparoditis, N. (2013). Semantic Approach in Image Change Detection. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2013. Lecture Notes in Computer Science, vol 8192. Springer, Cham. https://doi.org/10.1007/978-3-319-02895-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02895-8_40

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02894-1

  • Online ISBN: 978-3-319-02895-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics