Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 247))

Abstract

Polymers provide chemical interfaces to electronic nose sensors for detection of volatile organic compounds. An electronic nose combines a properly selected set of sensors (array) with pattern recognition methods for generating information rich odor response patterns and extracting chemical identities. Each sensor in the array is functionalized by a different polymer for diversely selective sorption of target chemical analytes. Selection of an optimal set of polymers from a long list of potential polymers is crucial for cost-effective high performance development of electronic noses. In this paper we present an application of fuzzy c-means clustering on partition coefficient data available for target vapors and most prospective polymers for selection of minimum number of polymers that can create maximum discrimination between target chemical compounds. The selection method has been validated by simulating a polymer coated surface acoustic wave (SAW) sensor array for monitoring fish freshness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Firestein, S.: How the Olfactory System Makes Sense of Scents. Nature 413, 211–218 (2001)

    Article  Google Scholar 

  2. Persaud, K., Dodd, G.: Analysis of Discrimination Mechanisms in the Mammalian Olfactory System using a Model Nose. Nature 299, 352–355 (1982)

    Article  Google Scholar 

  3. Gardner, J.W., Bartlett, P.N.: Electronic Noses: Principles and Applications. Oxford University Press, New York (1999)

    Google Scholar 

  4. Hines, E.L., Biolet, P., Gardner, J.W., Gongora, M.A.: Pattern Analysis for Electronic Nose. In: Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W. (eds.) Handbook of Machine Olfaction: Electronic Nose Technology. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  5. Carey, W.P., Beebe, K.R., Kowalski, B.R.: Selection of Adsorbates for Chemical Sensor Arrays by Pattern Recognition. Anal. Chem. 58, 149–153 (1986)

    Article  Google Scholar 

  6. Grate, J.W.: Acoustic Wave Microsensor Arrays for Vapor Sensing. Chem. Rev. 100, 2627–2648 (2000)

    Article  Google Scholar 

  7. Park, J., Groves, W.A., Zellers, E.T.: Vapor Recognition with Small Arrays of Polymer-Coated Microsensors. Anal. Chem. 71, 3877–3886 (1999)

    Article  Google Scholar 

  8. Yadava, R.D.S., Chaudhary, R.: Solvation Transduction and Independent Component Analysis for Pattern Recognition in SAW Electronic Nose. Sens. Actuators B 113, 1–21 (2006)

    Article  Google Scholar 

  9. Yadava, R.D.S.: Modeling, Simulation, and Information Processing for Development of a Polymeric Electronic Nose System. In: Korotcenkov, G. (ed.) Chemical Sensors – Simulation and Modeling, vol. 3, pp. 411–502. Momentum Press, New York (2012)

    Google Scholar 

  10. Mahboob, S., Hussain, B., Alkahem, H.F., Al-Akel, A.S., Iqbal, Z.: Volatile Aroma Comounds and Organoleptic Comparisons of Meat from Wild and Culured Cirrhina Mrigala and cyprinus carpio. Adv. in Nat. and App. Sci. 3, 113–126 (2009)

    Google Scholar 

  11. Phan, N.T., Kim, K.H., Jeon, E.C., Kim, U.H., Sohn, J.R., Pandey, S.K.: Analysis of Volatile Organic Compounds Released during Food Decaying Processes. Env. Monit. Assess. 184, 1683–1692 (2012)

    Article  Google Scholar 

  12. Sadok, S., Uglow, R.F., Haswell, S.J.: Determination of Trimethylamine in Fish by Flow Injection Analysis. Anal. Chim. Acta 321, 69–74 (1996)

    Article  Google Scholar 

  13. Shalaby, A.R.: Significance of Biogenic Amines to Food Safety and Human Health. Food Res. Inter. 29, 675–690 (1996)

    Article  Google Scholar 

  14. Dyer, W.J.: Amines in Fish Muscle: I. Colorometric Determination of Trimethylamine as the Picrate Salt. J. Fish. Res. Bd. Can. 6, 351–358 (1945)

    Article  MathSciNet  Google Scholar 

  15. Tarr, H.L.A.: Trimethylamine Formation in Relation to the Viable Bacterial Population of Spoiling Fish Muscle. Nature 142, 1078–1078 (1938)

    Article  Google Scholar 

  16. Bota, G.M., Harrington, P.B.: Direct Detection of Trimethylamine in Meat Food Products using Ion Mobility Spectrometry. Talanta 68, 629–635 (2006)

    Article  Google Scholar 

  17. Abraham, M.H.: Scales of Solute Hydrogen Bonding: Their Construction and Application to Physicochemical and Biochemical Process. Chem. Soc. Rev. 22, 73–83 (1993)

    Article  Google Scholar 

  18. Grate, J.W., Abraham, M.H., Wise, B.M.: Design and Information Content of Arrays of Sorption-based Vapor Sensors using Solubility Interactions and Linear Solvation Energy Relationships. In: Ryan, M.A., Shevade, A.V., Taylor, C.J., Homer, M.L., Blanco, M., Stetter, J.R. (eds.) Computational Methods for Sensor Material Selection, pp. 193–218. Springer Science, Business Media, New York (2009)

    Google Scholar 

  19. Ho, C.K., Lindgren, E.R., Rawlinson, K.S., McGrath, L.K., Wright, J.L.: Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds. Sensors 3, 236–247 (2003)

    Article  Google Scholar 

  20. Matatagui, D., Marti, J., Fernandez, M.J., Fontecha, J.L., Guturrez, J., Gracia, I., Cane, C., Horrilio, M.C.: Chemical Warfare Agents Simulants Detection with an Optimized SAW Sensor Array. Sens. and Actu. B 154, 199–205 (2011)

    Article  Google Scholar 

  21. Santiuste, J.M., Dominguez, J.A.G.: Study of Retention Interactions of Solute And Stationary Phase in the Light of the Solvation Model Theory. Ana. Chi. Acta 405, 335–346 (2000)

    Article  Google Scholar 

  22. Sanchez, I.C., Rodgers, P.A.: Solubility of Gases in Polymers. Pure & App. Chem. 62, 2107–2114 (1990)

    Article  Google Scholar 

  23. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press, New York (1981)

    Book  Google Scholar 

  24. Chiu, S.: Fuzzy Model Identification Based on Cluster Estimation. J. of Inte. Fuzzy Syst. 2, 267–278 (1994)

    Article  MathSciNet  Google Scholar 

  25. Martin, S.J., Frye, G.C., Senturia, S.D.: Dynamics and Response of Polymer-Coated Surface Acoustic Wave Devices: Effect of Viscoelastic Properties and Film Resonance. Ana. Chem. 66, 2201–2219 (1994)

    Article  Google Scholar 

  26. Yadava, R.D.S., Kshetrimayum, R., Khaneja, M.: Multifrequency Characterization of Viscoelastic Polymers and Vapor Sensing based on SAW Oscillators. Ultrasonics 49, 638–645 (2009)

    Article  Google Scholar 

  27. Ferry, J.D.: Viscoelastic properties of polymer. John Wiley and Sons, Newyork (1980)

    Google Scholar 

  28. Jha, S.K., Yadava, R.D.S.: Preprocessing of SAW Sensor Array Data and Pattern Recognition. IEEE Sen. J. 9, 1202–1208 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabha Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Verma, P., Yadava, R.D.S. (2014). Application of Fuzzy c-Means Clustering for Polymer Data Mining for Making SAW Electronic Nose. In: Satapathy, S., Udgata, S., Biswal, B. (eds) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013. Advances in Intelligent Systems and Computing, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-319-02931-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02931-3_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02930-6

  • Online ISBN: 978-3-319-02931-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics