Abstract
This paper reviews and compares the performance of five well-known detectors, SIFT, SURF, ORB, MSER and STAR, when combined in combination of with using three common descriptors, SIFT, SURF and ORB. To validate the results, these descriptors’ performances are verified using three scenarios that differ with respect to changes in scale, light variation and rotation. The results show that the SIFT and SURF detectors possess the most stable features, with an overall accuracy of 80% under various conditions. Among the tested descriptors, SURF provides the best description of each keypoint.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Li, J., Allinson, N.: A comprehensive review of current local features for computer vision. Neurocomputing 71(10-12), 1771–1787 (2008)
Freeman, W.T., Adelson, E.H.: The Design and Use of Steerable Filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)
Leung, T., Malik, J.: Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons. Int. J. Comput. Vision 43(1), 29–44 (2001)
Florack, L.M.J., et al.: General intensity transformations and differential invariants. Journal of Mathematical Imaging and Vision 4, 171–181 (1994)
Yan, B., Shi, F., Yue, J.: An Improved Image Corner Matching Approach. In: Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) ICIC 2013. LNCS, vol. 7995, pp. 472–481. Springer, Heidelberg (2013)
Harris, C., Stephens, M.: A Combined Corner and Edge Detection. In: Proceedings of the Fourth Alvey Vision Conference, pp. 147–151 (1988)
Mikolajczyk, K., et al.: A Comparison of Affine Region Detectors. Int. J. Comput. Vision 65(1-2), 43–72 (2005)
Moravec, H.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University (1980)
Lindeberg, T.: Scale-space Theory: A Basic Tool for Analysing Structures at Different Scales. J. of Applied Statistics 21(2), 224–270 (1994)
Witkin, A.P.,: Scale-space Filtering. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 1019–1022 (1983)
Klinger, A.: Patterns and Search Statistics. In: Rustagi, J.S. (ed.) Optimizing Methods in Statistics. Academic Press, New York (1971)
Lindeberg, T.: Scale-space Theory: A Framework for Handling Image Structures at Multiple Scales. CERN School of Computing, Egmond aan Zee (1996)
Koenderink, J.: The Structure of Images. Biological Cybernetics 50(5), 363–370 (1984)
Devernay, F.: A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy, Institut National De Recherche En Informatique Et En Automatique (1995)
Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)
Taylor, S., Drummond, T.: Binary Histogrammed Intensity Patches for Efficient and Robust Matching. Int. J. Comput. Vision 94(2), 241–265 (2011)
Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)
Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. Int. J. Comput. Vision 60(1), 63–86 (2004)
Zhuping, W., et al.: An Affine Invariant Feature Detection Method Based on SIFT and MSER. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 69–72 (2012)
Mainali, P., et al.: SIFER: Scale-Invariant Feature Detector with Error Resilience. International Journal of Computer Vision 104(2), 172–197 (2013)
Brown, M., Lowe, D.: Invariant Features from Interest Point Groups (2002)
Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)
Matas, J., et al.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference, vol. 1, pp. 384–393 (2002)
Kristensen, F., Maclean, W.J.: Real-Time Extraction of Maximally Stable Extremal Regions on an FPGA. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007, pp. 165–168 (2007)
Rublee, E., et al.: ORB: An Efficient Alternative to SIFT or SURF. In: International Conference on Computer Vision (2011)
Trajkovic, M., Hedley, M.: Fast Corner Detection. Image and Vision Computing 16(2), 75–87 (1998)
Rosin, P.L.: Measuring Corner Properties. Computer Vision and Image Understanding, 291–307 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Hedayati, M., Diyana, W.M., Zaki, W., Hussain, A., Zulkifley, M.A. (2013). Performances of Invariant Feature Detectors in Real-Time Video Applications. In: Zaman, H.B., Robinson, P., Olivier, P., Shih, T.K., Velastin, S. (eds) Advances in Visual Informatics. IVIC 2013. Lecture Notes in Computer Science, vol 8237. Springer, Cham. https://doi.org/10.1007/978-3-319-02958-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-02958-0_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02957-3
Online ISBN: 978-3-319-02958-0
eBook Packages: Computer ScienceComputer Science (R0)