Skip to main content

Performances of Invariant Feature Detectors in Real-Time Video Applications

  • Conference paper
Advances in Visual Informatics (IVIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8237))

Included in the following conference series:

Abstract

This paper reviews and compares the performance of five well-known detectors, SIFT, SURF, ORB, MSER and STAR, when combined in combination of with using three common descriptors, SIFT, SURF and ORB. To validate the results, these descriptors’ performances are verified using three scenarios that differ with respect to changes in scale, light variation and rotation. The results show that the SIFT and SURF detectors possess the most stable features, with an overall accuracy of 80% under various conditions. Among the tested descriptors, SURF provides the best description of each keypoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, J., Allinson, N.: A comprehensive review of current local features for computer vision. Neurocomputing 71(10-12), 1771–1787 (2008)

    Article  Google Scholar 

  2. Freeman, W.T., Adelson, E.H.: The Design and Use of Steerable Filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Article  Google Scholar 

  3. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)

    Google Scholar 

  6. Leung, T., Malik, J.: Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons. Int. J. Comput. Vision 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  7. Florack, L.M.J., et al.: General intensity transformations and differential invariants. Journal of Mathematical Imaging and Vision 4, 171–181 (1994)

    Article  MathSciNet  Google Scholar 

  8. Yan, B., Shi, F., Yue, J.: An Improved Image Corner Matching Approach. In: Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) ICIC 2013. LNCS, vol. 7995, pp. 472–481. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Harris, C., Stephens, M.: A Combined Corner and Edge Detection. In: Proceedings of the Fourth Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  10. Mikolajczyk, K., et al.: A Comparison of Affine Region Detectors. Int. J. Comput. Vision 65(1-2), 43–72 (2005)

    Article  Google Scholar 

  11. Moravec, H.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University (1980)

    Google Scholar 

  12. Lindeberg, T.: Scale-space Theory: A Basic Tool for Analysing Structures at Different Scales. J. of Applied Statistics 21(2), 224–270 (1994)

    Google Scholar 

  13. Witkin, A.P.,: Scale-space Filtering. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 1019–1022 (1983)

    Google Scholar 

  14. Klinger, A.: Patterns and Search Statistics. In: Rustagi, J.S. (ed.) Optimizing Methods in Statistics. Academic Press, New York (1971)

    Google Scholar 

  15. Lindeberg, T.: Scale-space Theory: A Framework for Handling Image Structures at Multiple Scales. CERN School of Computing, Egmond aan Zee (1996)

    Google Scholar 

  16. Koenderink, J.: The Structure of Images. Biological Cybernetics 50(5), 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Devernay, F.: A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy, Institut National De Recherche En Informatique Et En Automatique (1995)

    Google Scholar 

  18. Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  19. Taylor, S., Drummond, T.: Binary Histogrammed Intensity Patches for Efficient and Robust Matching. Int. J. Comput. Vision 94(2), 241–265 (2011)

    Article  Google Scholar 

  20. Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)

    Google Scholar 

  21. Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. Int. J. Comput. Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  22. Zhuping, W., et al.: An Affine Invariant Feature Detection Method Based on SIFT and MSER. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 69–72 (2012)

    Google Scholar 

  23. Mainali, P., et al.: SIFER: Scale-Invariant Feature Detector with Error Resilience. International Journal of Computer Vision 104(2), 172–197 (2013)

    Article  Google Scholar 

  24. Brown, M., Lowe, D.: Invariant Features from Interest Point Groups (2002)

    Google Scholar 

  25. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Matas, J., et al.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference, vol. 1, pp. 384–393 (2002)

    Google Scholar 

  27. Kristensen, F., Maclean, W.J.: Real-Time Extraction of Maximally Stable Extremal Regions on an FPGA. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007, pp. 165–168 (2007)

    Google Scholar 

  28. Rublee, E., et al.: ORB: An Efficient Alternative to SIFT or SURF. In: International Conference on Computer Vision (2011)

    Google Scholar 

  29. Trajkovic, M., Hedley, M.: Fast Corner Detection. Image and Vision Computing 16(2), 75–87 (1998)

    Article  Google Scholar 

  30. Rosin, P.L.: Measuring Corner Properties. Computer Vision and Image Understanding, 291–307 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Hedayati, M., Diyana, W.M., Zaki, W., Hussain, A., Zulkifley, M.A. (2013). Performances of Invariant Feature Detectors in Real-Time Video Applications. In: Zaman, H.B., Robinson, P., Olivier, P., Shih, T.K., Velastin, S. (eds) Advances in Visual Informatics. IVIC 2013. Lecture Notes in Computer Science, vol 8237. Springer, Cham. https://doi.org/10.1007/978-3-319-02958-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02958-0_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02957-3

  • Online ISBN: 978-3-319-02958-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics