Abstract
Many graph clustering algorithms perform successive divisions or aggregations of subgraphs leading to a hierarchical decomposition of the network. An important question in this domain is to know if this hierarchy reflects the structure of the network or if it is only an artifice due to the conduct of the procedure. We propose a method to validate and, if necessary, to optimize the multi-scale decomposition produced by such methods. We apply our procedure to the algorithm proposed by Blondel et al. (2008) based on modularity maximization. In this context, a generalization of this quality measure in the multi-level case is introduced. We test our method on random graphs and real world examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blanc, C., Delest, M., Fédou, J.-M., Mélançon, G., Queyroi, F.: Évaluer la qualité d’une fragmentation de graphe multi-niveaux. In: Journées MARAMI 2010, Toulouse, France (2010)
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, P10008 (2008)
Cook, D.J., Holder, L.B.: Mining Graph Data. Wiley (2006)
Cui, W., Zhou, H., Qu, H., Wong, P., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics 14(6), 1277–1284 (2008)
Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, P09008 (2005)
Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010)
Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proceedings of the National Academy of Sciences 104(1), 36 (2007)
Good, B., De Montjoye, Y., Clauset, A.: Performance of modularity maximization in practical contexts. Physical Review E 81(4), 46106 (2010)
Lancichinetti, A., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Physical Review E 78(4), 046110 (2008)
Lancichinetti, A., Radicchi, F., Ramasco, J.: Finding statistically significant communities in networks. PloS One 6(4), e18961 (2011)
Mancoridis, S., Mitchell, B., Rorres, C., Chen, Y., Gansner, E.: Using automatic clustering to produce high-level system organizations of source code. In: Proceedings of the 6th International Workshop on Program Comprehension, pp. 45–52. IEEE (1998)
Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences, USA 103, 8577–8582 (2006)
Pons, P., Latapy, M.: Post-processing hierarchical community structures: Quality improvements and multi-scale view. Theoretical Computer Science 412, 892–900 (2010)
Pumain, D. (ed.): Hierarchy in Natural and Social Sciences. Methodos Series, vol. 3. Springer (2006)
Rosvall, M., Bergstrom, C.: Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PloS One 6(4), e18209 (2011)
Simon, H.: The architecture of complexity. Proceedings of the American Philosophical Society 106(6), 467–482 (1962)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Queyroi, F. (2014). Optimizing a Hierarchical Community Structure of a Complex Network. In: Guillet, F., Pinaud, B., Venturini, G., Zighed, D. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-02999-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-02999-3_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02998-6
Online ISBN: 978-3-319-02999-3
eBook Packages: EngineeringEngineering (R0)