Skip to main content

Optimizing a Hierarchical Community Structure of a Complex Network

  • Chapter
Advances in Knowledge Discovery and Management

Part of the book series: Studies in Computational Intelligence ((SCI,volume 527))

  • 880 Accesses

Abstract

Many graph clustering algorithms perform successive divisions or aggregations of subgraphs leading to a hierarchical decomposition of the network. An important question in this domain is to know if this hierarchy reflects the structure of the network or if it is only an artifice due to the conduct of the procedure. We propose a method to validate and, if necessary, to optimize the multi-scale decomposition produced by such methods. We apply our procedure to the algorithm proposed by Blondel et al. (2008) based on modularity maximization. In this context, a generalization of this quality measure in the multi-level case is introduced. We test our method on random graphs and real world examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blanc, C., Delest, M., Fédou, J.-M., Mélançon, G., Queyroi, F.: Évaluer la qualité d’une fragmentation de graphe multi-niveaux. In: Journées MARAMI 2010, Toulouse, France (2010)

    Google Scholar 

  2. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, P10008 (2008)

    Google Scholar 

  3. Cook, D.J., Holder, L.B.: Mining Graph Data. Wiley (2006)

    Google Scholar 

  4. Cui, W., Zhou, H., Qu, H., Wong, P., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics 14(6), 1277–1284 (2008)

    Article  Google Scholar 

  5. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, P09008 (2005)

    Google Scholar 

  6. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proceedings of the National Academy of Sciences 104(1), 36 (2007)

    Article  Google Scholar 

  8. Good, B., De Montjoye, Y., Clauset, A.: Performance of modularity maximization in practical contexts. Physical Review E 81(4), 46106 (2010)

    Article  Google Scholar 

  9. Lancichinetti, A., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Physical Review E 78(4), 046110 (2008)

    Google Scholar 

  10. Lancichinetti, A., Radicchi, F., Ramasco, J.: Finding statistically significant communities in networks. PloS One 6(4), e18961 (2011)

    Google Scholar 

  11. Mancoridis, S., Mitchell, B., Rorres, C., Chen, Y., Gansner, E.: Using automatic clustering to produce high-level system organizations of source code. In: Proceedings of the 6th International Workshop on Program Comprehension, pp. 45–52. IEEE (1998)

    Google Scholar 

  12. Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences, USA 103, 8577–8582 (2006)

    Article  Google Scholar 

  13. Pons, P., Latapy, M.: Post-processing hierarchical community structures: Quality improvements and multi-scale view. Theoretical Computer Science 412, 892–900 (2010)

    Article  MathSciNet  Google Scholar 

  14. Pumain, D. (ed.): Hierarchy in Natural and Social Sciences. Methodos Series, vol. 3. Springer (2006)

    Google Scholar 

  15. Rosvall, M., Bergstrom, C.: Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PloS One 6(4), e18209 (2011)

    Google Scholar 

  16. Simon, H.: The architecture of complexity. Proceedings of the American Philosophical Society 106(6), 467–482 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Queyroi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Queyroi, F. (2014). Optimizing a Hierarchical Community Structure of a Complex Network. In: Guillet, F., Pinaud, B., Venturini, G., Zighed, D. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-02999-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02999-3_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02998-6

  • Online ISBN: 978-3-319-02999-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics