Skip to main content

The Control and Perception of Finger Forces

  • Chapter
  • First Online:
The Human Hand as an Inspiration for Robot Hand Development

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 95))

Abstract

The human hand demonstrates remarkable dexterity in its capacity to control precisely the forces involved in manipulating objects and the timing of movements during the execution of skilled motor tasks. In all of these endeavors, mechanoreceptors in the skin play a critical role in encoding the timing, magnitude, direction and spatial distribution of fingertip forces. When cutaneous inputs are absent or deficient, the hand is unable to compensate rapidly when an object begins to slip between the digits, and misdirected finger movements are not recognized and corrected. The control and perception of forces generated by the hand therefore relies on a close interplay between the sensory and motor systems. When sensory information changes, the capacity to control and modulate force can be disrupted and this in turn influences the perceived magnitude of the forces being produced. Cutaneous mechanoreceptors provide crucial information about the forces produced by the fingers and these inputs together with centrally generated corollary discharges are fundamental to the human perception of force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009)

    Article  Google Scholar 

  2. L.A. Jones, S.J. Lederman, Human Hand Function (Oxford University Press, New York, 2006)

    Book  Google Scholar 

  3. R.S. Johansson, G. Westling, Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp. Brain Res. 66, 141–154 (1987)

    Article  Google Scholar 

  4. D. Rempel, E. Serina, E. Klinenberg, B.J. Martin, T.J. Armstrong, J.A. Foulke, S. Natarajan, The effect of keyboard keyswitch make force on applied force and finger flexor muscle activity. Ergonomics 40, 800–808 (1997)

    Article  Google Scholar 

  5. J.T. Dennerlein, C.D. Mote, D.M. Rempel, Control strategies for finger movement during touch typing: the role of the extrinsic muscles during a keystroke. Exp. Brain Res. 121, 1–6 (1998)

    Article  Google Scholar 

  6. B.J. Martin, T.J. Armstrong, J.A. Foulke, S. Natarajan, E. Klinenberg, E. Serina, D. Rempel, Keyboard reaction force and finger flexor electromyograms during computer keyboard work. Hum. Factors 38, 654–664 (1996)

    Article  Google Scholar 

  7. R.T. Krampe, K.A. Ericsson, Maintaining excellence: deliberate practice and elite performance in young and older pianists. J. Exp. Psych. Gen. 125, 331–359 (1996)

    Google Scholar 

  8. C. Palmer, Mapping musical thought to musical performance, J. Exp. Psychol. Human Percept. Perform. 15, 331–346 (1989)

    Google Scholar 

  9. A.M. Gordon, J.F. Soechting, Use of tactile afferent information in sequential finger movements. Exp. Brain Res. 107, 281–292 (1995)

    Article  Google Scholar 

  10. A.M. Smith, S.H. Scott, Subjective scaling of smooth surface friction. J. Neurophysiol. 75, 1957–1962 (1996)

    Google Scholar 

  11. A.M. Smith, C.E. Chapman, M. Deslandes, J.-S. Langlais, M.-P. Thibodeau, Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res. 144, 211–223 (2002)

    Google Scholar 

  12. R.H. LaMotte, M.A. Srinivasan, Surface microgeometry: tactile perception and neural encoding, in Information Processing in the Somatosensory System, ed. by O. Franzen, J. Westman (Macmillan, London, 1991), pp. 49–58

    Google Scholar 

  13. M.A. Srinivasan, J.M. Whitehouse, R.H. LaMotte, Tactile detection of slip: surface microgeometry and peripheral neural codes. J. Neurophys. 63, 1323–1332 (1990)

    Google Scholar 

  14. S.J. Bolanowski, G.A. Gescheider, R.T. Verrillo, C.M. Checkosky, Four channels mediate the mechanical aspects of touch. JASA 84, 1680–1694 (1988)

    Article  Google Scholar 

  15. L. Jami, Golgi tendon organs in mammalian skeletal muscle: functional properties and central action. Physiol. Rev. 72, 623–661 (1992)

    Google Scholar 

  16. M.P. Mileusnic, G.E. Loeb, Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ. J. Neurophysiol. 96, 1789–1802 (2006)

    Article  Google Scholar 

  17. G. Macefield, S.C. Gandevia, D. Burke, Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. J. Physiol. 429, 113–129 (1990)

    Google Scholar 

  18. S.C. Gandevia, Kinesthesia: roles for afferent signals and motor commands, in Handbook of physiology. Section 12. Exercise: Regulation and integration of multiple systems, ed. by L. Rowell, J.T. Shepherd (Oxford University Press, New York, 1996), pp. 128–172

    Google Scholar 

  19. L.A. Jones, The senses of effort and force during fatiguing contractions, in Fatigue: Neural and Muscular Mechanisms, ed. by S.C. Gandevia, R.M. Enoka, A.J. McComas, D.G. Stuart, C.K. Thomas (Plenum, New York, 1995), pp. 305–313

    Chapter  Google Scholar 

  20. M.R. Cutkosky, P.K. Wright, Modeling manufacturing grips and correlations with design of robotic hands. Proc. IEEE ICRA 3, 1533–1539 (1986)

    Google Scholar 

  21. C.L. MacKenzie, T. Iberall, The Grasping Hand (North-Holland, Amsterdam, 1994)

    Google Scholar 

  22. V. Mathiowetz, N. Kashman, G. Volland, K. Weber, M. Dowe, S. Rogers, Grip and pinch strength: normative data for adults. Arch. Phys. Med. Rehab. 66, 69–72 (1985)

    Google Scholar 

  23. H.-N. Ho, L.A. Jones, Modeling the thermal responses of the skin surface during hand-object interactions. J. Biomech. Eng. 130, 21005-1–21005-8 (2008)

    Google Scholar 

  24. E.M. Meftah, L. Belingard, C.E. Chapman, Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Exp. Brain Res. 132, 351–361 (2000)

    Article  Google Scholar 

  25. L.A. Jones, M. Berris, Material discrimination and thermal perception, in IEEE Proceedings 11th on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 171–178 (2003)

    Google Scholar 

  26. B.B. Edin, G. Westling, R.S. Johansson, Independent control of human finger-tip forces at individual digits during precision lifting. J. Physiol. 450, 547–564 (1992)

    Google Scholar 

  27. L.A. Jones, Visual and haptic feedback in the control of force. Exp. Brain Res. 130, 269–272 (2000)

    Article  Google Scholar 

  28. N. Mai, M. Avarello, P. Bolsinger, Maintenance of low isometric forces during prehensile grasping. Neuropsychol. 23, 805–812 (1985)

    Article  Google Scholar 

  29. H.Z. Tan, B. Eberman, M.A. Srinivasan, B. Cheng, Human factors for the design of force-reflecting haptic interfaces. Proc. ASME Dyn. Sys. Cont. Div. DSC. 55–1, 353–359 (1994)

    Google Scholar 

  30. M. Schieber, M. Santello, Hand function: Peripheral and central constraints in performance. J. Appl. Physiol. 96, 2293–2300 (2004)

    Article  Google Scholar 

  31. K.T. Reilly, M.H. Schieber, Incomplete functional subdivision of the human multitendoned finger muscle flexor digitorum profundus: An electromyographic study. J. Neurophysiol. 90, 2560–2570 (2003)

    Article  Google Scholar 

  32. T. Ohtsuki, Decrease in grip strength induced by simultaneous bilateral exertion with reference to finger strength. Ergonomics 24, 37–48 (1981)

    Article  Google Scholar 

  33. K.T. Reilly, G.R. Hammond, Independence of force production by digits of the human hand. Neurosci. Lett. 290, 53–56 (2000)

    Article  Google Scholar 

  34. L.A. Jones, Manual dexterity, in The Psychobiology of the Hand, ed. by K.J. Connolly (Mac Keith Press, London, 1998), pp. 47–62

    Google Scholar 

  35. H. Kinoshita, S. Kawai, K. Ikuta, Contributions and co-ordination of individual fingers in multiple finger prehension. Ergonomics 38, 1212–1230 (1995)

    Article  Google Scholar 

  36. R. Reilmann, A.M. Gordon, H. Henningsen, Initiation and development of fingertip forces during whole-hand grasping. Exp. Brain Res. 140, 443–452 (2001)

    Article  Google Scholar 

  37. S.L. Kilbreath, S.C. Gandevia, Neural and biomechanical specialization of human thumb muscles revealed by matching weights and grasping objects. J. Physiol. 472, 537–556 (1993)

    Google Scholar 

  38. L.A. Jones, E. Piateski, Contribution of tactile feedback from the hand to the perception of force. Exp. Brain Res. 168, 298–302 (2006)

    Article  Google Scholar 

  39. H.E. Wheat, L.M. Salo, A.W. Goodwin, Human ability to scale and discriminate forces typical of those occurring during grasp and manipulation. J. Neurosci. 24, 3394–3401 (2004)

    Article  Google Scholar 

  40. L.A. Jones, Matching forces: constant errors and differential thresholds. Perception 18, 681–687 (1989)

    Article  Google Scholar 

  41. S.C. Gandevia, S.L. Kilbreath, Accuracy of weight estimation for weights lifted by proximal and distal muscles of the human upper limb. J. Physiol. 423, 299–310 (1990)

    Google Scholar 

  42. X.D. Pang, H.Z. Tan, N.I. Durlach, Manual discrimination of force using active finger motion. Percept. Psychophys. 49, 531–540 (1991)

    Article  Google Scholar 

  43. N. Mai, P. Schreiber, J. Hermsdörfer, Changes in perceived finger force produced by muscular contractions under isometric and anisometric conditions. Exp. Brain Res. 84, 453–460 (1991)

    Article  Google Scholar 

  44. S.L. Kilbreath, S.C. Gandevia, Independent digit control: Failure to partition perceive heaviness of weights lifted by digits of the human hand. J. Physiol. 442, 585–599 (1991)

    Google Scholar 

  45. L.A. Jones, Perceptual constancy and the perceived magnitude of muscle forces. Exp. Brain Res. 151, 197–203 (2003)

    Article  Google Scholar 

  46. E.E. Brodie, H.E. Ross, Sensorimotor mechanisms in weight discrimination. Percept. Psychophys. 36, 477–481 (1984)

    Article  Google Scholar 

  47. S.L. Kilbreath, K. Refshauge, S.C. Gandevia, Differential control of the digits of the human hand: evidence from digital anaesthesia and weight matching. Exp. Brain Res. 117, 507–511 (1997)

    Article  Google Scholar 

  48. J. Galie, L.A. Jones, Thermal cues and the perception of force. Exp. Brain Res. 200, 81–90 (2010)

    Article  Google Scholar 

  49. J.C. Stevens, J.E. Hooper, How skin and object temperature influence touch sensation. Percept. Psychophys. 32, 282–284 (1982)

    Article  Google Scholar 

  50. L.A. Jones, I.W. Hunter, A perceptual analysis of stiffness. Exp. Brain Res. 79, 150–156 (1990)

    Article  Google Scholar 

  51. H.Z. Tan, N.I. Durlach, G.L. Beauregard, M.A. Srinivasan, Manual discrimination of compliance using active pinch grasp: the roles of force and work cues. Percept. Psychophys. 57, 495–510 (1995)

    Article  Google Scholar 

  52. W.M. Bergmann Tiest, A.M.L. Kappers, Cues for haptic perception of compliance. IEEE Trans. Haptics 2, 189–199 (2009)

    Article  Google Scholar 

  53. L.A. Jones, I.W. Hunter, A perceptual analysis of viscosity. Exp. Brain Res. 94, 343–351 (1993)

    Article  Google Scholar 

  54. L. Jones, I. Hunter, S. Lafontaine, Viscosity discrimination: a comparison of an adaptive two-alternative forced-choice and an adjustment procedure. Perception 26, 1571–1578 (1997)

    Article  Google Scholar 

  55. W.M. Bergmann Tiest, A.C.L. Vrijling, A.M.L. Kappers, Haptic perception of viscosity. EuroHaptics 2010, part 1, LNCS 6191, pp. 29–34 (2010)

    Google Scholar 

  56. J.R. Napier, The Human Hand (Carolina Biological Supply, Burlington, 1976)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U.S. National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynette A. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jones, L.A. (2014). The Control and Perception of Finger Forces. In: Balasubramanian, R., Santos, V. (eds) The Human Hand as an Inspiration for Robot Hand Development. Springer Tracts in Advanced Robotics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-03017-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03017-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03016-6

  • Online ISBN: 978-3-319-03017-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics