Abstract
Consumers review other consumer’s opinion and experience of the quality of various products before making purchase. Automatic sentiment analysis of WOM in the form of user product reviews, blog posts and comments in online forum can support strategies in areas such as search engines, recommender systems, and market research and benefit to both consumers and sellers. The ontology-based approach designed in this work aims to investigate how to detect and classify mixed positive and negative opinions by interpreting with an ontology containing opinion information on terms. Our research question is whether disinterested subjectivity scores of sentiment ontology are pertinent to sentiment orientations not affected by reviewer’s linguistic bias. The experimental results adopting opinion lexical resource achieve better and more stable performance in F-measure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chevalier, J.A., Mayzlin, D.: The Effect of Word of Mouth on Sales: Online Book Reviews. No. w10148. National Bureau of Economic Research (2003)
Chen, Y., Xie, J.: Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix. Manage. Sci. 54(3), 477–491 (2008)
Ohana, B., Tierney, B.: Sentiment Classification of Reviews Using SentiWordNet. In: 9th IT & T Conference, p. 13 (2009)
Ye, Q., Shi, W., Li, Y.: Sentiment Classification for Movie Reviews in Chinese by Improved Semantic Oriented Approach. In: 39th Annual Hawaii International Conference on System Sciences, HICSS 2006, vol. 3, p. 53b. IEEE (2006)
Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment Strength Detection for the Social Web. Journal of the American Society for Information Science and Technology 63(1), 163–173 (2012)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs Up?: Sentiment Classification Using Machine Learning Techniques. In: ACL 2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)
Cui, H., Mittal, V., Datar, M.: Comparative Experiments on Sentiment Classification for Online Product Reviews. In: AAAI, vol. 6, pp. 1265–1270 (2006)
Ye, Q., Zhang, Z., Law, R.: Sentiment Classification of Online Reviews to Travel Destinations by Supervised Machine Learning Approaches. Expert Systems with Applications 36(3), 6527–6535 (2009)
Li, S., Wang, Z., Zhou, G., Lee, S.Y.M.: Semi-Supervised Learning for Imbalanced Sentiment Classification. In: 22nd International Joint Conference on Artificial Intelligence, vol. 3, pp. 1826–1831. AAAI Press (2011)
Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: 10th ACM SIGKDD, pp. 168–177. ACM (2004)
Titov, I., McDonald, R.: Modeling Online Reviews with Multi-Grain Topic Models. In: 17th International Conference on World Wide Web, pp. 111–120. ACM (2008)
Li, F., Liu, N., Jin, H., Zhao, K., Yang, Q., Zhu, X.: Incorporating Reviewer and Product Information for Review Rating Prediction. In: 22nd International Joint Conference on Artificial Intelligence, vol. 3, pp. 1820–1825. AAAI Press (2011)
de Albornoz, J.C., Plaza, L., Gervás, P., Díaz, A.: A Joint Model of Feature Mining and Sentiment Analysis for Product Review Rating. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 55–66. Springer, Heidelberg (2011)
Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-Domain Sentiment Classification via Spectral Feature Alignment. In: 19th International Conference on World Wide Web, pp. 751–760. ACM (2010)
Dave, K., Lawrence, S., Pennock, D.M.: Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews. In: 12th International Conference on World Wide Web, pp. 519–528. ACM (2003)
Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. In: Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354. Association for Computational Linguistics (2005)
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment Strength Detection in Short Informal Text. Journal of the American Society for Information Science and Technology 61(12), 2544–2558 (2010)
Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In: LREC, vol. 10, pp. 2200–2204 (2010)
Ghose, A., Ipeirotis, P.G.: Designing Novel Review Ranking Systems: Predicting the Usefulness and Impact of Reviews. In: 9th International Conference on Electronic Commerce, pp. 303–310. ACM (2007)
Hu, X., Downie, J.S., West, K., Ehmann, A.: Mining Music Reviews: Promising Preliminary Results. In: 6th International Symposium on Music Information Retrieval (2005)
Jin, W., Ho, H.H., Srihari, R.K.: OpinionMiner: A Novel Machine Learning System for Web Opinion Mining and Extraction. In: 15th ACM SIGKDD, pp. 1195–1204. ACM (2009)
Turney, P.D.: Thumbs Up or Thumbs Down?: Semantic Orientation Applied to Unsupervised Classification of Reviews. In: 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424. Association for Computational Linguistics (2002)
Hatzivassiloglou, V., McKeown, K.R.: Predicting the Semantic Orientation of Adjectives. In: 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics, pp. 174–181. Association for Computational Linguistics (1997)
Miller, G.A.: WordNet: ALexical Database for English. Communications of the ACM 38(11), 39–41 (1995)
Zhuang, L., Jing, F., Zhu, X.Y.: Movie Review Mining and Summarization. In: 15th ACM International Conference on Information and Knowledge Management, pp. 43–50. ACM (2006)
Ding, X., Liu, B., Yu, P.S.: A Holistic Lexicon-Based Approach to Opinion Mining. In: International Conference on Web Search and Web Data Mining, pp. 231–240. ACM (2008)
Andreevskaia, A., Bergler, S.: Mining WordNet for a Fuzzy Sentiment: Sentiment Tag Extraction from WordNet Glosses. In: EACL, pp. 209–216 (2006)
Esuli, A., Sebastiani, F.: SentiWordNet: A Publicly Available Lexical Resource for Opinion mining. In: LREC, vol. 6, pp. 417–422 (2006)
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-Based Methods for Sentiment Analysis. Computational Linguistics 37(2), 267–307 (2011)
Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Categorization. In: ICML, vol. 97, pp. 412–420 (1997)
Saggionα, H., Funk, A.: Interpreting SentiWordNet for Opinion Classification. In: 7th Conference on International Language Resources and Evaluation, LREC 2010 (2010)
Hung, C., Lin, H.: Using Objective Words in SentiWordNet to Improve Sentiment Classification for Word of Mouth. IEEE Intelligent Systems 28(2), 47–54 (2013)
Abulaish, M., Jahiruddin, Doja, M.N., Ahmad, T.: Feature and Opinion Mining for Customer Review Summarization. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 219–224. Springer, Heidelberg (2009)
Denecke, K.: Using SentiWordNet for Multilingual Sentiment Analysis. In: IEEE 24th International Conference on Data Engineering Workshop, ICDEW 2008, pp. 507–512. IEEE (2008)
Hamouda, A., Rohaim, M.: Reviews Classification Using SentiWordNetLexicon. In: World Congress on Computer Science and Information Technology (2011)
Peñalver-Martínez, I., Valencia-García, R., García-Sánchez, F.: Ontology-Guided Approach to Feature-Based Opinion Mining. In: Muñoz, R., Montoyo, A., Métais, E. (eds.) NLDB 2011. LNCS, vol. 6716, pp. 193–200. Springer, Heidelberg (2011)
Mei, Q., Ling, X., Wondra, M., Su, H., Zhai, C.: Topic Sentiment Mixture: Modeling facets and Opinions in Weblogs. In: 16th International Conference on World Wide Web, pp. 171–180. ACM (2007)
Wang, C., Blei, D.M.: Collaborative Topic Modeling for Recommending Scientific Articles. In: 17th ACM SIGKDD, pp. 448–456. ACM (2011)
Go, A., Bhayani, R., Huang, L.: Twitter Sentiment Classification Using Distant Supervision. CS224N Project Report, pp. 1-12 (2009)
Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-Dependent Twitter Sentiment Classification. In: ACL, pp. 151–160 (2011)
Kouloumpis, E., Wilson, T., Moore, J.: Twitter Sentiment Analysis: The Good the Bad and the OMG! In: ICWSM (2011)
Barbosa, L., Feng, J.: Robust Sentiment Detection on Twitter from Biased and Noisy Data. In: 23rd International Conference on Computational Linguistics: Posters, pp. 36–44. Association for Computational Linguistics (2010)
Wikipedia.org, http://en.wikipedia.org/wiki/Yelp.com
Akbani, R., Kwek, S., Japkowicz, N.: Applying Support Vector Machines to Imbalanced Datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)
Wu, G., Chang, E.Y.: Class-Boundary Alignment for Imbalanced Dataset Learning. In: ICML 2003 Workshop on Learning from Imbalanced Data Sets II, pp. 49–56 (2003)
Chang, C.C., Lin, C.J.: LIBSVM: ALibrary for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)
EL-Manzalawy, Y., Honavar, V.: WLSVM: Integrating LibSVM into Weka Environment (2005), http://www.cs.iastate.edu/~yasser/wlsvm
Foody, G.M.: Status of Land Cover Classification Accuracy Assessment. Remote Sensing of Environment 80(1), 185–201 (2002)
Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Categorization. In: ICML, vol. 97, pp. 412–420 (1997)
van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth (1979)
Musicant, D.R., Kumar, V., Ozgur, A.: Optimizing F-Measure with Support Vector Machines. In: FLAIRS Conference, pp. 356–360 (2003)
Douglas, K.M., Sutton, R.M., Wilkin, K.: Could You Mind YourLanguage? An Investigation of Communicators’ Ability to Inhibit Linguistic Bias. Journal of Language and Social Psychology 27(2), 123–139 (2008)
Ptaszynski, M., Dybala, P., Shi, W., Rzepka, R.: Contextual Affect Analysis: A Aystem for Verification of Emotion Appropriateness Supported with Contextual Valence Shifters. Int. J. Biometrics 2(2), 134–154 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Kim, HJ., Song, M. (2013). An Ontology-Based Approach to Sentiment Classification of Mixed Opinions in Online Restaurant Reviews. In: Jatowt, A., et al. Social Informatics. SocInfo 2013. Lecture Notes in Computer Science, vol 8238. Springer, Cham. https://doi.org/10.1007/978-3-319-03260-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-03260-3_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03259-7
Online ISBN: 978-3-319-03260-3
eBook Packages: Computer ScienceComputer Science (R0)