Skip to main content

Copula Based GARCH Dependence Model of Chinese and Korean Tourist Arrivals to Thailand: Implications for Risk Management

  • Conference paper
Modeling Dependence in Econometrics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 251))

Abstract

China and Korea are two of the important tourist markets for Thailand. The growth rates of tourist arrivals from these two countries have volatility and also seem to have co-movement. Understanding the dependence between these tourists markets has importance for strategic planning and processes for decision-making. The purpose of this study is to find out the dependence between the growth rates of tourist arrivals from China and Korea to Thailand by using the copula based GARCH model. Copula provides a potential and flexible method to model the dependence between random variables. It is preferable to the conventional approach because the copula can cross over the restriction of normal distribution and linear assumption, according to the Pearson correlation. The results of the analysis can contribute to appropriate policy implications. The results show that there exists a weak positive dependence and that the rotated Joe 180. copula is the best fit, which provides an evidence of lower tail dependence. The growth rates of tourist arrivals from China and Korea have co-movement that is both upward and downward, but with a weak dependence. The rise or loss of tourism demand from China (Korea) is slightly correlated by the rise or loss of tourism demand from Korea (China). The time-varying rotated Joe 180. copula is the best fit and the most significant, which implies that the dependence parameter has varied over time. The policy implications for the risk management of the tourism demand should provide enough motivation for the marketing and promotion of the tourism demand by considering the time-varying dependency of China and Korea. Moreover, they should consider alternative target markets as substitutes when theres a loss of arrivals from these two markets in order to diversify the risk of tourism demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World Travel & Tourism Council. Travel & Tourism Economic Impact 2012 (2012), http://www.wttc.org/site_media/uploads/downloads/world2012.pdf (accessed February 22, 2013)

  2. World Tourism Organization. UNWTO World Tourism Barometer, vol. 11 (2013), http://dtxtq4w60xqpw.cloudfront.net/sites/all/files/pdf/unwto_barom13_01_jan_excerpt_0.pdf (accessed February 21, 2013)

  3. World Tourism Organization. UNWTO Tourism Highlights 2012 Edition. World Tourism Organization (2012), http://dtxtq4w60xqpw.cloudfront.net/sites/all/files/docpdf/unwtohighlights12enlr_1.pdf (accessed February 21, 2013)

  4. Goh, C.: Exploring impact of climate on tourism demand. Annals of Tourism Research 39(4), 1859–1883 (2012)

    Article  MathSciNet  Google Scholar 

  5. Vanhove, N.: The Economics of Tourism Destinations, 2nd edn. Elsevier, Ltd., London (2011)

    Google Scholar 

  6. Lean, H.H., Smyth, R.: Asian Financial Crisis, Avian Flu and Terrorist Threats: Are Shocks to Malaysian Tourist Arrivals Permanent or Transitory? Asia Pacific Journal of Tourism Research 14(3), 301–321 (2009)

    Article  Google Scholar 

  7. World Bank. China 2030: Building a Modern, Harmonious, and Creative High-Income Society [pre-publication version]. World Bank, Washington, DC (2012), https://openknowledge.worldbank.org/handle/10986/6057 (accessed February 21, 2013)

  8. Goh, C., Law, R.: Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management 23, 499–510 (2002)

    Article  Google Scholar 

  9. Chang, C.L., et al.: Modelling and Forecasting tourism from East Asia to Thailand under temporal and spatial aggregation. Mathematics and Computers in Simulation 79, 1730–1744 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chu, F.L.: Forecasting tourism demand with ARMA-based methods. Tourism Management 30, 740–751 (2009)

    Article  Google Scholar 

  11. Chan, F., et al.: Modelling multivariate international tourism demand and volatility. Tourism Management 26, 459–471 (2005)

    Article  Google Scholar 

  12. Shareef, R., McAleer, M.: Modelling the uncertainty in monthly international tourist arrivals to the Maldives. Tourism Management 28, 23–45 (2007)

    Article  Google Scholar 

  13. Coshall, J.T.: Combining volatility and smoothing forecasts of UK demand for international tourism. Tourism Management 30, 495–511 (2009)

    Article  Google Scholar 

  14. Alvarez, G., et al.: Modeling Tourist Arrivals to Spain from the Top Five Source Markets. In: Ekasingh, B., Jintrawet, A., Pratummintra, S. (eds.) Proceedings of the 2nd International Conference on Asian Simulation and Modeling, Chiang Mai, Thailand, pp. 451–457 (2007)

    Google Scholar 

  15. Hoti, S., et al.: Modelling international tourism and country risk spillovers for Cyprus and Malta. Tourism Management 28, 1472–1484 (2007)

    Article  Google Scholar 

  16. Jang, S.S., Chen, M.H.: Financial portfolio approach to optimal tourist market mixes. Tourism Management 29, 761–770 (2008)

    Article  Google Scholar 

  17. Chen, M.H., et al.: Discovering Optimal Tourist Market Mixes. Journal of Travel Research 50(6), 602–614 (2011)

    Article  Google Scholar 

  18. Chollets, L., et al.: International diversification: A copula approach. Journal of Banking & Finance 35, 403–417 (2011)

    Article  Google Scholar 

  19. Sriboonchitta, S., et al.: Modeling volatility and dependency of agricultural price and production indices of Thailand: Static versus time-varying copulas. International Journal of Approximate Reasoning 54(6), 793–808 (2013)

    Article  Google Scholar 

  20. Patton, A.J.: Modelling Asymmetric Exchange Rate Dependence Using the Conditional Copula. Unpublished Discussion paper. University of California (June 2001)

    Google Scholar 

  21. Patton, A.J.: Modelling asymmetric exchange rate dependence. International Economic Review 47(2), 527–556 (2006)

    Article  MathSciNet  Google Scholar 

  22. Goorbergh, R.: A Copula-Based Autoregressive Conditional Dependence Model of International Stock Markets. Unpublished DNB working paper No.22, Amsterdam, Netherlands (2004), http://www.dnb.nl/binaries/Working%20Paper%2022_tcm46-146679.pdf (accessed February 11, 2013)

  23. Jondeau, E., Rockinger, M.: The Copula-GARCH model of conditional dependencies: An international stock market application. Journal of International Money and Finance 25, 827–853 (2006)

    Article  Google Scholar 

  24. Wang, H., Cai, X.: A Copula Based GARCH Dependence Model of Shanghai and Shenzhen Stock Markets. Unpublished D-level Essay in Statistics, Dalarna University, Sweden (June 2011), http://www.statistics.du.se/essays/D11_HuilingWang_XinhuaCai.pdf (accessed February 10, 2013)

  25. Reboredo, J.C.: Do food oil prices co-move? Energy Policy 49, 456–467 (2012)

    Article  Google Scholar 

  26. Zhang, H., et al.: An integrated model of tourists? time use and expenditure behaviour with self-selection based on a fully nested Archimedean copula function. Tourism Management 33, 1562–1573 (2012)

    Article  Google Scholar 

  27. Liu, J., Sriboonchitta, S.: Analysis of Volatility and Dependence between the Tourist Arrivals from China to Thailand and Singapore: A Copula-Based GARCH Approach. In: Huynh, V.N., Kreinovich, V., Sriboonchitta, S., Suriya, K. (eds.) Uncertainty Analysis in Econometrics with Applications. AISC, vol. 200, pp. 285–296. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Bollerslev, T.: Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics 31, 307–327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Brechmann, E.C., Schepsmeier, U.: Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of Statistical Software 52(3), 1–27 (2013)

    Google Scholar 

  30. Nelson, D.B.: Stationarity and persistence in the GARCH(1,1) model. Econometric Theory 6, 318–334 (1990)

    Article  MathSciNet  Google Scholar 

  31. Lee, S.W., Hansen, B.E.: Asymptotic theory for the GARCH(1,1) quasi-maximum likelihood estimator. Econometric Theory 10, 29–52 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sklar, A.: Fonctions de répartition á n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8, 229–231 (1959)

    MathSciNet  Google Scholar 

  33. Nelson, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)

    Google Scholar 

  34. Yan, J.: Enjoy the Joy of Copulas: With a Package copula. Journal of Statistical Software 21(4), 1–21 (2007)

    Google Scholar 

  35. Trivedi, P.K., Zimmer, D.M.: Copula Modeling: An Introduction for Practitioners. Foundations and Trends in Econometrics 1(1), 1–111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lee, L.: Generalized econometric models with selectivity. Econometrica 51, 507–512 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Clayton, D.G.: A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65, 141–151 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gumbel, E.J.: Distributions des Valeurs Extremes en Plusieurs Dimensions. Publications de l’Institute de Statistíque de l’Université de Paris 9, 171–173 (1960)

    MathSciNet  MATH  Google Scholar 

  39. Joe, H.: Parametric Families of Multivariate Distributions with Given Margins. Journal of Multivariate Analysis 46(2), 262–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Frank, M.J.: On the simultaneous associativity of F(x,y) and x + y − F(x,y). Aequationes Math. 19, 194–226 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fisher, M.: Tailoring copula-based multivariate generalized hyperbolic secant distributions to financial return data: An empirical investigation. Discussion papers, University of Erlangen-Nüremberg, Germany (2003), http://www.statistik.wiso.uni-erlangen.de/forschung/d0047.pdf (accessed January 25, 2013)

  42. Manner, H., Reznikova, O.: A survey on time-varying copulas: specification, simulations and application. Econometric Reviews 31(6), 654–687 (2012)

    Article  MathSciNet  Google Scholar 

  43. Patton, A.J.: Applications of Copula Theory in Financial Econometrics. Dissertation, University of California (2002)

    Google Scholar 

  44. Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London (1997)

    Google Scholar 

  45. Genest, C., et al.: A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions. Biometrika 82, 543–552 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Akaike, H.: Information Theory and an Extension of the Maximum Likelihood Principle. In: Petrov, B.N., Csaki, F. (eds.) Proceedings of the Second International Symposium on Information Theory, Budapest, pp. 267–281. Akademiai Kiado (1973)

    Google Scholar 

  47. Schwarz, G.: Estimating the Dimension of a Model. The Annals of Statistics 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vuong, Q.H.: Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica 57(2), 307–333 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  49. Clarke, K.A.: A Simple Distribution-Free Test for Nonnested Model Selection. Political Analysis 15(3), 347–363 (2007)

    Article  Google Scholar 

  50. Genest, C., Rivest, L.P.: Statistical Inference Procedures for Bivariate Archimedean Copulas. Journal of the American Statistical Association 88(423), 1034–1043 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, W., Wells, M.T.: Model selection and semiparametric inference for bivariate failure-time data. Journal of the American Statistical Association 95(449), 62–72 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ornanong Puarattanaarunkorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Puarattanaarunkorn, O., Sriboonchitta, S. (2014). Copula Based GARCH Dependence Model of Chinese and Korean Tourist Arrivals to Thailand: Implications for Risk Management. In: Huynh, VN., Kreinovich, V., Sriboonchitta, S. (eds) Modeling Dependence in Econometrics. Advances in Intelligent Systems and Computing, vol 251. Springer, Cham. https://doi.org/10.1007/978-3-319-03395-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03395-2_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03394-5

  • Online ISBN: 978-3-319-03395-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics