Skip to main content

RUAV System Identification and Verification Using a Frequency-Domain Methodology

  • Chapter
ROBOT2013: First Iberian Robotics Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 252))

  • 2913 Accesses

Abstract

The aim of this paper is to show a methodology to obtain a model of a rotary wing UAV (Unmanned Aerial Vehicle) employing a frequency-domain System Identification (SYSID) methodology using CIFER®. The methodology is applied to the CB-5000 RUAV and discuss several identification issues, from the telemetry acquisition process, parametric model to be identified and identification technique, to finally validate and implement the model. The UAV’s real autopilot software is integrated with the CIFER® model showing a good behaviour without any change on the tuning of the real autopilot gains. In order to validate and compare the results, an alternative two rigid body kinematic model is presented. Finally, the models integrated with the autopilot are compared by using the experimental data of the real RUAV (Rotorcraft UAV) platform following the same flight plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kondak, K., Maza, I., Ollero, A., Bernard, M.: Autonomous Transportation and Deployment with Aerial Robots for Search and Rescue Missions. Wiley Blackwell 28(6), 914–931 (2011)

    Google Scholar 

  2. Tischler, M.B., Remple, R.K.: Aircraft and Rotorcraft System Identification. Engineering Methods with Fligth Test Examples. AIAA (2006)

    Google Scholar 

  3. Sánchez Montaño, I.: Indentificación en frecuencia de UAVs de ala giratoria usando CIFER. Aplicación al CB-5000. Internal Report. University of Seville (2013)

    Google Scholar 

  4. Kalman, R.E.: A New Approach to Linear Filtering and prediction problems. Research Institute for Advanced Study. Baltimore Md (1960)

    Google Scholar 

  5. Alarcón, F., Jimenez, A., Viguria, A., Bejar, M., Ollero, A., Santamaría, D.: Model-Based design development and validation for UAS critical software. Journal of Intelligent and Robotic Systems 65(1-4), 103–114 (2012)

    Article  Google Scholar 

  6. Mettler, B.: Identification Modeling and Characteristics of Miniature Rotorcraft. Kluwer Academic Publishers (2003)

    Google Scholar 

  7. Klein, V., Morelli, E.A.: Aircraft System Identification. Th. and Practice, AIAA (2006)

    Google Scholar 

  8. CIFER user’s guide

    Google Scholar 

  9. Theodore, C.R., Tischler, M.B.: Rapid Frequency Domain Methods for UAV Flight Control Applications. In: AIAA Atmospheric Flight Mechanics Conf., Austin, Texas (2003)

    Google Scholar 

  10. Miller, M.P.: An Accurate Method of measuring the moments of inertia of Airplanes, vol. Naca-tn-351 (October 1930)

    Google Scholar 

  11. Wingrove, R.: Applications of a Technique for Estimating Aircraft States from Recorded Flight Test Data. AIAA (1972)

    Google Scholar 

  12. Bach, R.E.: State Estimation Applications in Aircraft Flight-Data Analysis: A User’s Manual for SMACK, NASA (1991)

    Google Scholar 

  13. Fletcher, J.W.: Obtaining Consistent Model of Helicopter Flight-Data Measurement Errors Using Kinematic-Compatibility and State-Reconstruction Methods. American Helicopter Society Annual Forum (1990)

    Google Scholar 

  14. Béjar, M.: Methodology and Techniques for designing control systems of autonomous helicopters, PhDThesis, University of Seville (2009)

    Google Scholar 

  15. García, M., Viguria, A., Ollero, A., Santamaría, D.: Position-based velocity control system for rotary-wing UAVs. In: Proceedings of the 1st Workshop on Research, Development and Education on Unmanned Aerial Systems, RED-UAS (December 2011)

    Google Scholar 

  16. Kondak, K., Bernard, M., Losse, N., Hommel, G.: Elaborated modeling and control for autonomous small size helicopters. In: ISR/ROBOTIK 2006 Joint Conference on Robotics (2006)

    Google Scholar 

  17. La Civita, M.: Integrated Modeling and Robust Control for Full-Envelope Flight of Robotic Helicopters, Pittsburgh: Ph D.Carnegie Mellon University (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sánchez, I., Santamaría, D., Viguria, A., Ollero, A., Heredia, G. (2014). RUAV System Identification and Verification Using a Frequency-Domain Methodology. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-03413-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03413-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03412-6

  • Online ISBN: 978-3-319-03413-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics