Skip to main content

A New Combined Strategy for Discrimination between Types of Weed

  • Chapter
ROBOT2013: First Iberian Robotics Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 252))

  • 2995 Accesses

Abstract

Specific weed management consists on adjusting herbicide treatments depending on the zone infested and the type of weed. In this context, the discrimination between grasses (monocots) and broad-leaved weeds (dicots) is an important objective mainly because the two weed groups can be appropriately controlled by different specific herbicides. This work proposes a method of discrimination between these types of weeds based on a combined strategy, the Sugeno Fuzzy Integral, where the final decision is taken by combining seven attributes, the Hu moments. The main challenge in terms of image analysis is to achieve an appropriate discrimination between both groups in outdoor field images under varying conditions of lighting as well as of soil background texture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thompson, J.F., Stafford, J.V., Miller, P.C.H.: Potential for automatic weed detection and selective herbicide application. Crop Production 10(4), 254–259 (1991)

    Article  Google Scholar 

  2. Marshall, E.J.P.: Field-scale estimates of grass weed populations in arable land. Weed Research 28(3), 191–198 (1988)

    Article  Google Scholar 

  3. Johnson, G.A., Mortensen, D.A., Martin, A.R.: A simulation of herbicide use based on weed spatial distribution. Weed Research 35(3), 197–205 (1995)

    Article  Google Scholar 

  4. Tian, L., Reid, J.F., Hummel, J.W.: Development of a precision sprayer for site-specific weed management. Transactions of the American Society of Agricultural Engineers 42, 893–900 (1999)

    Article  Google Scholar 

  5. Medlin, C.R., Shaw, D.R.: Economic comparison of broadcast and site-specific herbicide applications in nontransgenic and glyphosate-tolerant Glycine max. Weed Science 48(5), 653–661 (2000)

    Article  Google Scholar 

  6. Timmermann, C., Gerhards, R., Kühbauch, W.: The economic impact of site-specific weed control. Precision Agriculture 4(3), 249–260 (2003)

    Article  Google Scholar 

  7. Tang, L., Tian, L., Steward, B.L.: Classification of broadleaf and grass weeds using Gabor wavelets and an Artificial Neural Network. Transactions of the ASABE 46(4), 1247–1254 (2003)

    Google Scholar 

  8. López Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la Orden, M., García-Torres, L.: Spatial variability of agricultural soils in southern Spain. Plant and Soil 246, 97–105 (2002)

    Article  Google Scholar 

  9. Onyango, C.M., Marchant, J.A.: Segmentation of row crop plants from weeds using colour and morphology. Computers and Electronics in Agriculture 39, 141–155 (2003)

    Article  Google Scholar 

  10. Ribeiro, A., Fernández-Quintanilla, C., Barroso, J., García-Alegre, M.C.: Development of an image analysis system for estimation of weed. In: Stafford, J.V. (ed.) Proceedings 5th European Conf. On Precision Agriculture (5ECPA), pp. 169–174 (2005)

    Google Scholar 

  11. Tellaeche, A., Burgos-Artizzu, X., Pajares, G., Ribeiro, A., Fernández-Quintanilla, C.: A new vision-based approach to differential spraying in precision agriculture. Computers and Electronics in Agriculture 60(2), 144–155 (2008)

    Article  Google Scholar 

  12. Tellaeche, A., Burgos-Artizzu, X.P., Pajares, G., Ribeiro, A.: A vision-based method for weeds identification through the Bayesian decision theory. Pattern Recognition 41, 521–530 (2008)

    Article  MATH  Google Scholar 

  13. Burgos-Artizzu, X.P., Ribeiro, A., Tellaeche, A., Pajares, G., Fernández-Quintanilla, C.: Improving weed pressure assessment using digital images from an experience-based reasoning approach. Computers and Electronics in Agriculture 65, 176–185 (2009)

    Article  Google Scholar 

  14. Tian, L.F., Slaughter, C.S.: Environmentally adaptive segmentation algorithm for outdoor image segmentation. Computers and Electronics in Agriculture 21, 153–168 (1998)

    Article  Google Scholar 

  15. Brown, R.B., Noble, S.D.: Site-specific weed management: sensing requirements - what do we need to see? Weed Science 53, 252–258 (2005)

    Article  Google Scholar 

  16. Lee, W.S., Slaughter, D.C., Giles, D.K.: Robotic weed control system for tomatoes. Precision Agriculture 1(1), 95–113 (1999)

    Article  Google Scholar 

  17. Meyer, G.E., Mehta, T., Kocher, M.F., Mortensen, D.A., Samal, A.: Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Transactions of the ASABE 41(4), 1189–1197 (1998)

    Article  Google Scholar 

  18. Ishak, A.J., Hussain, A., Mustafa, M.M.: Weed image classification using Gabor wavelet and gradient field distribution. Computers and Electronics in Agriculture 66, 53–61 (2009)

    Article  Google Scholar 

  19. Hemming, J., Rath, T.: Precision agriculture: computer-vision-based weed identification under field conditions using controlled lighting. Journal of Agricultural Engineering Research 78(3), 233–243 (2001)

    Article  Google Scholar 

  20. Burgos-Artizzu, X.P., Ribeiro, A., Guijarro, M., Pajares, G.: Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agr. 75, 337–346 (2011)

    Article  Google Scholar 

  21. Burks, T.F., Shearer, S.A., Heath, J.R., Donohue, K.D.: Evaluation of Neural-network Classifiers for Weed Species Discrimination. Biosystems Engineering 91(3), 293–304 (2005)

    Article  Google Scholar 

  22. Panneton, B., Guillaume, S., Samson, G., Roger, J.: Discrimination of Corn from Monocotyledonous Weeds with Ultraviolet (UV) Induced Fluorescence. Applied Spectroscopy 65(1), 10–19 (2011)

    Article  Google Scholar 

  23. Camargo Neto, J., Meyer, G.E.: Crop species identification using machine vision of computer extracted individual leaves. In: Chen, Y.R., Meyer, G.E., Tu, S. (eds.) Optical Sensors and Sensing Systems for Natural Resources and Food Safety and Quality, Proc. SPIE, Bellingham WA, vol. 5996, pp. 64–74 (2005)

    Google Scholar 

  24. Sainz-Costa, N., Ribeiro, A., Andujar, D., Dorado, J.: Optimización evolutiva para la construcción de un método de estimación de porcentajes de cobertura de gramíneas y dicotiledóneas. In: Lozano, J.A., Gámez, J.A., Moreno Pérez, J.A. (eds.) Proceedings of the Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011), vol. 1 (2011)

    Google Scholar 

  25. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Information Theory. 8, 179–187 (1962)

    MATH  Google Scholar 

  26. Mercimek, M., Gulez, K., Mumcu, T.K.: Real object recognition using moment in-variants. Sadhana - Springer India 30(6), 765–775 (2005)

    Article  MATH  Google Scholar 

  27. Flusser, J., Suk, T., Zitová, B.: Moments and Moment Invariants in Pattern Recognition. John Wiley & Sons, Ltd. (2009)

    Google Scholar 

  28. Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., Cruz, J.M., Montes, F.: A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments. Sensors 9(12), 9468–9492 (2009)

    Article  Google Scholar 

  29. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley (2004)

    Google Scholar 

  30. Klaus, A., Sormann, M., Karner, K.: Segmented-Based Stereo Matching Using Belief Propagation and Self-Adapting Dissimilarity Measure. In: Proc. of 18th Int. Conference on Pattern Recognition, vol. 3, pp. 15–18 (2006)

    Google Scholar 

  31. Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., Cruz, J.M.: A Stereovision Matching Strategy for Images Captured with Fish-Eye Lenses in Forest Environments. Sensors 11(2), 1756–1783 (2011)

    Article  Google Scholar 

  32. Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., Cruz, J.M.: Segmentation and stereoscopic correspondence in images obtained with omnidirectional projection for forest environments. In: Torreao, J.R.A. (ed.) Stereo Vision, ch. 3, pp. 41–56. In-Tech (2011)

    Google Scholar 

  33. Burgos-Artizzu, X.P., Ribeiro, A., Tellaeche, A., Pajares, G., Fernández-Quintanilla, C.: Analysis of natural images processing for the extraction of agricultural elements. Image Vision Computing 28, 138–149 (2010)

    Article  Google Scholar 

  34. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. I–II. Addison-Wesley, Reading (1992)

    Google Scholar 

  35. Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., De la Cruz, J.M.: Combination of attributes in stereovision matching for fish-eye lenses in forest analysis. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 277–287. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Javier Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herrera, P.J., Dorado, J., Ribeiro, Á. (2014). A New Combined Strategy for Discrimination between Types of Weed. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-03413-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03413-3_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03412-6

  • Online ISBN: 978-3-319-03413-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics