Abstract
Specific weed management consists on adjusting herbicide treatments depending on the zone infested and the type of weed. In this context, the discrimination between grasses (monocots) and broad-leaved weeds (dicots) is an important objective mainly because the two weed groups can be appropriately controlled by different specific herbicides. This work proposes a method of discrimination between these types of weeds based on a combined strategy, the Sugeno Fuzzy Integral, where the final decision is taken by combining seven attributes, the Hu moments. The main challenge in terms of image analysis is to achieve an appropriate discrimination between both groups in outdoor field images under varying conditions of lighting as well as of soil background texture.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thompson, J.F., Stafford, J.V., Miller, P.C.H.: Potential for automatic weed detection and selective herbicide application. Crop Production 10(4), 254–259 (1991)
Marshall, E.J.P.: Field-scale estimates of grass weed populations in arable land. Weed Research 28(3), 191–198 (1988)
Johnson, G.A., Mortensen, D.A., Martin, A.R.: A simulation of herbicide use based on weed spatial distribution. Weed Research 35(3), 197–205 (1995)
Tian, L., Reid, J.F., Hummel, J.W.: Development of a precision sprayer for site-specific weed management. Transactions of the American Society of Agricultural Engineers 42, 893–900 (1999)
Medlin, C.R., Shaw, D.R.: Economic comparison of broadcast and site-specific herbicide applications in nontransgenic and glyphosate-tolerant Glycine max. Weed Science 48(5), 653–661 (2000)
Timmermann, C., Gerhards, R., Kühbauch, W.: The economic impact of site-specific weed control. Precision Agriculture 4(3), 249–260 (2003)
Tang, L., Tian, L., Steward, B.L.: Classification of broadleaf and grass weeds using Gabor wavelets and an Artificial Neural Network. Transactions of the ASABE 46(4), 1247–1254 (2003)
López Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la Orden, M., García-Torres, L.: Spatial variability of agricultural soils in southern Spain. Plant and Soil 246, 97–105 (2002)
Onyango, C.M., Marchant, J.A.: Segmentation of row crop plants from weeds using colour and morphology. Computers and Electronics in Agriculture 39, 141–155 (2003)
Ribeiro, A., Fernández-Quintanilla, C., Barroso, J., García-Alegre, M.C.: Development of an image analysis system for estimation of weed. In: Stafford, J.V. (ed.) Proceedings 5th European Conf. On Precision Agriculture (5ECPA), pp. 169–174 (2005)
Tellaeche, A., Burgos-Artizzu, X., Pajares, G., Ribeiro, A., Fernández-Quintanilla, C.: A new vision-based approach to differential spraying in precision agriculture. Computers and Electronics in Agriculture 60(2), 144–155 (2008)
Tellaeche, A., Burgos-Artizzu, X.P., Pajares, G., Ribeiro, A.: A vision-based method for weeds identification through the Bayesian decision theory. Pattern Recognition 41, 521–530 (2008)
Burgos-Artizzu, X.P., Ribeiro, A., Tellaeche, A., Pajares, G., Fernández-Quintanilla, C.: Improving weed pressure assessment using digital images from an experience-based reasoning approach. Computers and Electronics in Agriculture 65, 176–185 (2009)
Tian, L.F., Slaughter, C.S.: Environmentally adaptive segmentation algorithm for outdoor image segmentation. Computers and Electronics in Agriculture 21, 153–168 (1998)
Brown, R.B., Noble, S.D.: Site-specific weed management: sensing requirements - what do we need to see? Weed Science 53, 252–258 (2005)
Lee, W.S., Slaughter, D.C., Giles, D.K.: Robotic weed control system for tomatoes. Precision Agriculture 1(1), 95–113 (1999)
Meyer, G.E., Mehta, T., Kocher, M.F., Mortensen, D.A., Samal, A.: Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Transactions of the ASABE 41(4), 1189–1197 (1998)
Ishak, A.J., Hussain, A., Mustafa, M.M.: Weed image classification using Gabor wavelet and gradient field distribution. Computers and Electronics in Agriculture 66, 53–61 (2009)
Hemming, J., Rath, T.: Precision agriculture: computer-vision-based weed identification under field conditions using controlled lighting. Journal of Agricultural Engineering Research 78(3), 233–243 (2001)
Burgos-Artizzu, X.P., Ribeiro, A., Guijarro, M., Pajares, G.: Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agr. 75, 337–346 (2011)
Burks, T.F., Shearer, S.A., Heath, J.R., Donohue, K.D.: Evaluation of Neural-network Classifiers for Weed Species Discrimination. Biosystems Engineering 91(3), 293–304 (2005)
Panneton, B., Guillaume, S., Samson, G., Roger, J.: Discrimination of Corn from Monocotyledonous Weeds with Ultraviolet (UV) Induced Fluorescence. Applied Spectroscopy 65(1), 10–19 (2011)
Camargo Neto, J., Meyer, G.E.: Crop species identification using machine vision of computer extracted individual leaves. In: Chen, Y.R., Meyer, G.E., Tu, S. (eds.) Optical Sensors and Sensing Systems for Natural Resources and Food Safety and Quality, Proc. SPIE, Bellingham WA, vol. 5996, pp. 64–74 (2005)
Sainz-Costa, N., Ribeiro, A., Andujar, D., Dorado, J.: Optimización evolutiva para la construcción de un método de estimación de porcentajes de cobertura de gramíneas y dicotiledóneas. In: Lozano, J.A., Gámez, J.A., Moreno Pérez, J.A. (eds.) Proceedings of the Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011), vol. 1 (2011)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Information Theory. 8, 179–187 (1962)
Mercimek, M., Gulez, K., Mumcu, T.K.: Real object recognition using moment in-variants. Sadhana - Springer India 30(6), 765–775 (2005)
Flusser, J., Suk, T., Zitová, B.: Moments and Moment Invariants in Pattern Recognition. John Wiley & Sons, Ltd. (2009)
Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., Cruz, J.M., Montes, F.: A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments. Sensors 9(12), 9468–9492 (2009)
Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley (2004)
Klaus, A., Sormann, M., Karner, K.: Segmented-Based Stereo Matching Using Belief Propagation and Self-Adapting Dissimilarity Measure. In: Proc. of 18th Int. Conference on Pattern Recognition, vol. 3, pp. 15–18 (2006)
Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., Cruz, J.M.: A Stereovision Matching Strategy for Images Captured with Fish-Eye Lenses in Forest Environments. Sensors 11(2), 1756–1783 (2011)
Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., Cruz, J.M.: Segmentation and stereoscopic correspondence in images obtained with omnidirectional projection for forest environments. In: Torreao, J.R.A. (ed.) Stereo Vision, ch. 3, pp. 41–56. In-Tech (2011)
Burgos-Artizzu, X.P., Ribeiro, A., Tellaeche, A., Pajares, G., Fernández-Quintanilla, C.: Analysis of natural images processing for the extraction of agricultural elements. Image Vision Computing 28, 138–149 (2010)
Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. I–II. Addison-Wesley, Reading (1992)
Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., De la Cruz, J.M.: Combination of attributes in stereovision matching for fish-eye lenses in forest analysis. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 277–287. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Herrera, P.J., Dorado, J., Ribeiro, Á. (2014). A New Combined Strategy for Discrimination between Types of Weed. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-03413-3_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-03413-3_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03412-6
Online ISBN: 978-3-319-03413-3
eBook Packages: EngineeringEngineering (R0)