Skip to main content

Encoding Provenance Metadata for Social Science Datasets

  • Conference paper
Metadata and Semantics Research (MTSR 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 390))

Included in the following conference series:

  • 1447 Accesses

Abstract

Recording provenance is a key requirement for data-centric scholarship, allowing researchers to evaluate the integrity of source data sets and reproduce, and thereby, validate results. Provenance has become even more critical in the web environment in which data from distributed sources and of varying integrity can be combined and derived. Recent work by the W3C on the PROV model provides the foundation for semantically-rich, interoperable, and web-compatible provenance metadata. We apply that model to complex, but characteristic, provenance examples of social science data, describe scenarios that make scholarly use of those provenance descriptions, and propose a manner for encoding this provenance metadata within the widely-used DDI metadata standard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Daw, M., Procter, R., Lin, Y., Hewitt, T., Ji, W., Voss, A., Baird, K., Turner, A., Birkin, M., Miller, K., Dutton, W., Jirotka, M., Schroeder, R., de la Flor, G., Edwards, P., Allan, R., Yang, X., Crouchley, R.: Developing an e-Infrastructure for Social Science. In: Proceedings of e-Social Science 2007 (2007)

    Google Scholar 

  2. Lagoze, C., Block, W., Williams, J., Abowd, J.M., Vilhuber, L.: Data Management of Confidential Data. In: International Data Curation Conference (2013)

    Google Scholar 

  3. Vardigan, M., Heus, P., Thomas, W.: Data Documentation Initiative: Toward a Standard for the Social Sciences. The International Journal of Digital Curation 3(1) (2008)

    Google Scholar 

  4. Groth, P., Moreau, L.: PROV-Overview: An Overview of the PROV Family of Documents. W3C (2013)

    Google Scholar 

  5. National Science Foundation, NSF Award Search: Award#1131848 - NCRN-MN: Cornell Census-NSF Research Node: Integrated Research Support, Training and Data Documentation (2011)

    Google Scholar 

  6. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. ACM Sigmod Record (2005)

    Google Scholar 

  7. Cheney, J., Chong, S., Foster, N., Seltzer, M., Vansummeren, S.: Provenance. In: Proceeding of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications - OOPSLA 2009, p. 957 (2009)

    Google Scholar 

  8. Groth, P., Gil, Y., Cheney, J., Miles, S.: Requirements for Provenance on the Web. International Journal of Digital Curation 7(1), 39–56 (2012)

    Article  Google Scholar 

  9. McGuinness, D.L., Fox, P., Pinheiro da Silva, P., Zednik, S., Del Rio, N., Ding, L., West, P., Chang, C.: Annotating and embedding provenance in science data repositories to enable next generation science applications. AGU Fall Meeting Abstracts 1 (2008)

    Google Scholar 

  10. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The Open Provenance Model. University of Southampton, pp. 1–30 (August 2007)

    Google Scholar 

  11. Moreau, L., Missier, P.: PROV-N: The Provenance Notation. W3C (2013)

    Google Scholar 

  12. Jarmin, R., Miranda, J.: The Longtitudinal Business Database (2002)

    Google Scholar 

  13. Klyne, G., Groth, P.: Provenance Access and Query. W3C (2013)

    Google Scholar 

  14. Lebo, T., Sahoo, S., McGuinness, D.L.: PROV-O: The PROV Ontology. W3C (2013)

    Google Scholar 

  15. Kramer, S., Leahey, A., Southall, H., Vampras, J., Wackerow, J.: Using RDF to describe and link social science data to related resources on the Web: leveraging the Data Documentation Initiative (DDI) model. Data Documentation Initiative (September 01, 2012)

    Google Scholar 

  16. Bosch, T., Cyganiak, R., Wackerow, J., Zapilko, B.: Leveraging the DDI Model for Linked Statistical Data in the Social,  Behavioural, and Economic Sciences. In: International Conference on Dublin Core and Metadata Applications; DC-2012–The Kuching Proceedings (September 2012)

    Google Scholar 

  17. Bosch, T., Cyganiak, R., Gregory, A., Wackerow, J.: DDI-RDF Discovery Vocabulary: A Metadata Vocabulary for Documenting Research and Survey Data. In: Linked Data on the Web Workshop (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lagoze, C., Willliams, J., Vilhuber, L. (2013). Encoding Provenance Metadata for Social Science Datasets. In: Garoufallou, E., Greenberg, J. (eds) Metadata and Semantics Research. MTSR 2013. Communications in Computer and Information Science, vol 390. Springer, Cham. https://doi.org/10.1007/978-3-319-03437-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03437-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03436-2

  • Online ISBN: 978-3-319-03437-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics