Skip to main content

Assessing the Spatial Impact on an Agent-Based Modeling of Epidemic Control: Case of Schistosomiasis

  • Conference paper
Complex Sciences (Complex 2012)

Abstract

Given that most mathematical models of schistosomiasis are based on ordinary differential equations (ODE) and therefore do not take into account the spatial dimension of the schistosomiasis spread, we use an agent-based modeling approach to assess environmental impact on the modeling of this phenomenon. We show that taking into account the environment in the modeling process somehow affects the control policies that must be established according to the environmental characteristics of each system that is meant to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gao, S., Liu, Y., Luo, Y., Xie, D.: Control problems of a mathematical model for schistosomiasis transmission dynamics. Nonlinear Dyn. 63, 503–512 (2011)

    Article  MathSciNet  Google Scholar 

  2. Magombedze, G., Chiyaka, E.T., Mutimbo, L.: Modeling within host parasite dynamics of schistosomiasis. Computational and Mathematical Methods in Medicine 11(3), 255–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Feng, Z., Xu, D., Curtis, J., Minchella, D.J.: The Grid: On the role of schistosome Mating Structure in the maintenance of drug-resistant strains. Bulletin of Mathematical Biology 68, 209–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allen, E.J., Victory Jr., H.D.: Modeling and Simulation of a schistosomiasis infection with biological control. ActaTropica 87, 251–267 (2003)

    Google Scholar 

  5. Remais, J., Liang, S., Spear, R.C.: Coupling Hydrologic and Infectious Disease Models to Explain Regional Differences in Schistosomiasis Transmission in Southwestern in China. Environ. Sci. Technol. 42, 2643–2649 (2008)

    Article  Google Scholar 

  6. Rogier, C., Sallet, G.: Modélisation du Paludisme. Med. Trop. 64, 89–97 (2004)

    Google Scholar 

  7. Treuil, J.-P., Drogoul, A., Zucker, J.-D.: Modélisation et Simulation à base d’Agents. DUNOD, Paris (2008)

    Google Scholar 

  8. Le Moigne, J.-L.: La Modélisation des systèmes complexes, Paris, Dunod (1999)

    Google Scholar 

  9. Camara, G., Despres, S., Djedidi, R., Lo, M.: Modélisation Ontologique de processus dans le domaine de la veille épidémiologique. In: 18ème Congrès Francophone sur la Reconnaissance des Formes et l’Intelligence Artificielle, RFIA 2012 (2012)

    Google Scholar 

  10. Martcheva, M., Pilyugin, S.S.: An Epidemic Model Structured By Host Immunity. AMS Subject Classification: 92D30 (2005)

    Google Scholar 

  11. Chiyaka, E.T., Garira, W.: Mathematical Analysis of the Transmission Dynamics of Schistosomiasis in the Human-Snail Hosts. Journal of Biological Systems 17(3), 397–423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, Z., Eppert, A., Milner, F.A., Minchella, D.J.: Estimation of Parameters Governing the Transmission Dynamics of Schistosomes. Applied Mathematics Letters 17, 1105–1112 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. GAMA platform, http://code.google.com/p/gama-platform/

  14. Spear, R.C., Hubbard, A., Liang, S., Seto, E.: Disease Transmission Models for Public Health Decision Making: Toward and Approach for Designing Intervention Strategies for Schistosomiasis Japonica. Environ. Health Perspect. 110, 907–915 (2002)

    Article  Google Scholar 

  15. Mangal, T.D., Paterson, S., Fenton, A.: Predicting the Impact of Long-Term Temperature Changes on the Epidemiology and Control of Schistosomiasis: A Mechanistic Model. PLoS ONE 3(1), e1438 (2008), doi:10.1371/journal.pone.0001438

    Google Scholar 

  16. Cohen, J.E.: Mathematical Model of Schistosomiasis. Annual Review of Ecology and Systematics 8, 209–233 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Cisse, P.A., Dembele, J.M., Lo, M., Cambier, C. (2013). Assessing the Spatial Impact on an Agent-Based Modeling of Epidemic Control: Case of Schistosomiasis. In: Glass, K., Colbaugh, R., Ormerod, P., Tsao, J. (eds) Complex Sciences. Complex 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-03473-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03473-7_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03472-0

  • Online ISBN: 978-3-319-03473-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics