Abstract
Proxy re-encryption (PRE) is a highly useful cryptographic primitive whereby Alice and Bob can endow a proxy with the capacity to change ciphertext recipients from Alice to Bob, without the proxy itself being able to decrypt, thereby providing delegation of decryption authority. Key-private PRE (KP-PRE) specifies an additional level of confidentiality, requiring pseudo-random proxy keys that leak no information on the identity of the delegators and delegatees.
In this paper, we propose a CPA-secure PK-PRE scheme in the standard model (which we then transform into a CCA-secure scheme in the random oracle model). Both schemes enjoy highly desirable properties such as uni-directionality and multi-hop delegation.
Unlike (the few) prior constructions of PRE and KP-PRE that typically rely on bilinear maps under ad hoc assumptions, security of our construction is based on the hardness of the standard Learning-With-Errors (LWE) problem, itself reducible from worst-case lattice hard problems that are conjectured immune to quantum cryptanalysis, or “post-quantum”.
Of independent interest, we further examine the practical hardness of the LWE assumption, using Kannan’s exhaustive search algorithm coupling with pruning techniques. This leads to state-of-the-art parameters not only for our scheme, but also for a number of other primitives based on LWE published the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)
Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidelberg (2009), Full version at http://eprint.iacr.org/2008/463
Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (2006)
Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen 296(1), 625–635 (1993)
Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in ℝn. Discrete & Computational Geometry 13(1), 217–231 (1995)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)
Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC, pp. 575–584. ACM (2013)
Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and Communications Security, pp. 185–194. ACM (2007)
T. D. S. Challenge, http://www.latticechallenge.org/svp-challenge/
Dawson, E. (ed.): CT-RSA 2013. LNCS, vol. 7779. Springer, Heidelberg (2013)
Deng, R.H., Weng, J., Liu, S., Chen, K.: Chosen-ciphertext secure proxy re-encryption without pairings. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 1–17. Springer, Heidelberg (2008)
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptology 26(1), 80–101 (2013)
Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010)
Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.: Generic construction of chosen ciphertext secure proxy re-encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Heidelberg (2012)
Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007)
Isshiki, T., Nguyen, M.H., Tanaka, K.: Proxy re-encryption in a stronger security model extended from CT-RSA2012. In: Dawson [12], pp. 277–292
Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Johnson, D.S., Fagin, R., Fredman, M.L., Harel, D., Karp, R.M., Lynch, N.A., Papadimitriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (eds.) STOC, pp. 193–206. ACM (1983)
Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. IEEE Transactions on Information Theory 57(3), 1786–1802 (2011)
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)
Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: An update. In: Dawson [12], pp. 293–309
Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)
Rckert, M., Schneider, M.: Estimating the security of lattice-based cryptosystems. Cryptology ePrint Archive, Report 2010/137 (2010), http://eprint.iacr.org/
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005)
Schnorr, C.-P.: Lattice reduction by random sampling and birthday methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, Springer, Heidelberg (2003)
Seo, J.W., Yum, D.H., Lee, P.J.: Comments on “unidirectional chosen-ciphertext secure proxy re-encryption”. IEEE Transactions on Information Theory 59(5), 32–56 (2013)
Shao, J.: Anonymous ID-based proxy re-encryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 364–375. Springer, Heidelberg (2012)
Shao, J., Cao, Z., Liu, P.: SCCR: a generic approach to simultaneously achieve cca security and collusion-resistance in proxy re-encryption. Security and Communication Networks 4(2), 122–135 (2011)
Shao, J., Liu, P., Cao, Z., Wei, G.: Multi-use unidirectional proxy re-encryption. In: ICC, pp. 1–5. IEEE (2011)
Shao, J., Liu, P., Wei, G., Ling, Y.: Anonymous proxy re-encryption. Security and Communication Networks 5(5), 439–449 (2012)
Shao, J., Liu, P., Zhou, Y.: Achieving key privacy without losing cca security in proxy re-encryption. Journal of Systems and Software 85(3), 655–665 (2012)
Wang, L., Wang, L., Mambo, M., Okamoto, E.: New identity-based proxy re-encryption schemes to prevent collusion attacks. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 327–346. Springer, Heidelberg (2010)
Weng, J., Chen, M.-R., Yang, Y., Deng, R.H., Chen, K., Bao, F.: CCA-secure unidirectional proxy re-encryption in the adaptive corruption model without random oracles. SCIENCE CHINA Information Sciences 53(3), 593–606 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Aono, Y., Boyen, X., Phong, L.T., Wang, L. (2013). Key-Private Proxy Re-encryption under LWE. In: Paul, G., Vaudenay, S. (eds) Progress in Cryptology – INDOCRYPT 2013. INDOCRYPT 2013. Lecture Notes in Computer Science, vol 8250. Springer, Cham. https://doi.org/10.1007/978-3-319-03515-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-03515-4_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03514-7
Online ISBN: 978-3-319-03515-4
eBook Packages: Computer ScienceComputer Science (R0)