Skip to main content

A Faster Algorithm to Update Betweenness Centrality after Node Alteration

  • Conference paper
Algorithms and Models for the Web Graph (WAW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8305))

Included in the following conference series:

Abstract

Betweenness centrality is a centrality measure that is widely used, with applications across several disciplines. It is a measure which quantifies the importance of a vertex based on its occurrence in shortest paths between all possible pairs of vertices in a graph. This is a global measure, and in order to find the betweenness centrality of a node, one is supposed to have complete information about the graph. Most of the algorithms that are used to find betwenness centrality assume the constancy of the graph and are not efficient for dynamic networks. We propose a technique to update betweenness centrality of a graph when nodes are added or deleted. Our algorithm experimentally speeds up the calculation of betweenness centrality (after updation) from 7 to 412 times, for real graphs, in comparison to the currently best known technique to find betweenness centrality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthonisse, J.M.: The rush in a directed graph. Technical Report BN 9/71, Stichting Mathematisch Centrum, Amsterdam (1971)

    Google Scholar 

  2. Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-world networks. In: Proceedings of the 2006 International Conference on Parallel Processing, ICPP 2006, pp. 539–550 (2006)

    Google Scholar 

  3. Brandes, U.: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  4. Brandes, U., Pich, C.: Centrality estimation in large networks. International Journal of Bifurcation and Chaos 17(7), 2303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Social Networks 30(2), 136–145 (2008)

    Article  MathSciNet  Google Scholar 

  6. Florez, A.F., Park, D., Bhak, J., Kim, B.C., Kuchinsky, A., Morris, J.H., Espinosa, J., Muskus, C.: Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinformatics 11, 484 (2010)

    Article  Google Scholar 

  7. Freeman, L.A.: set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  8. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness centrality. In: Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 90–100. SIAM (2008)

    Google Scholar 

  9. Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness centrality. In: 2012 ASE/IEEE International Conference on Social Computing and 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust (2012)

    Google Scholar 

  10. Hage, P., Harary, F.: Eccentricity and centrality in networks. Social Networks 17, 57–63 (1995)

    Article  Google Scholar 

  11. Hanna, A.: Revolutionary Making and Self-Understanding: The Case of #Jan25 and Social Media Activism. Presented at Meeting of the International Studies Association, San Diego, CA (2012)

    Google Scholar 

  12. Iturria-Medina, Y., Sotero, R.C., Canales-Rodríguez, E.J., Alemán-Gómez, Y., Melie-García, L.: Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. NeuroImage 40(3), 1064–1076 (2008)

    Article  Google Scholar 

  13. Jackson, M.O.: Social and Economic Networks. Princeton University Press (2010)

    Google Scholar 

  14. Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-Betweenness Proteins in the Yeast Protein Interaction Network. J. Biomed. Biotechnol. 2, 96–103 (2005)

    Article  Google Scholar 

  15. Lee, M.J., Lee, J., Park, J.Y., Choi, R.H., Chung, C.W.: QUBE: a Quick algorithm for Updating BEtweenness centrality. In: Proceedings of the 21st International Conference on World Wide Web, pp. 351–360 (2012)

    Google Scholar 

  16. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2 (2007)

    Article  Google Scholar 

  17. Makarychev, Y.: Simple linear time approximation algorithm for betweenness. Operations Research Letters 40(6), 450–452 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Narayanan, S.: The Betweenness Centrality of Biological Networks. M. Sc. Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University (2005)

    Google Scholar 

  19. Newman, M.E.J.: A measure of betweenness centrality based on random walks. Social Networks 27(1), 39–54 (2005)

    Article  Google Scholar 

  20. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  21. Reitz, J.M.: ODLIS: Online Dictionary of Library and Information Science (2002)

    Google Scholar 

  22. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shanmugham, B., Pan, A.: Identification and Characterization of Potential Therapeutic Candidates in Emerging Human Pathogen Mycobacterium abscessus: A Novel Hierarchical In Silico Approach. PLoS ONE 8(3), e59126 (2013), doi:10.1371/journal.pone.0059126

    Article  Google Scholar 

  24. Shimbel, A.: Structural parameters of communication networks. Bulletin of Mathematical Biophysics 15, 501–507 (1953)

    Article  MathSciNet  Google Scholar 

  25. Spiliotopoulos, T., Oakley, I.: Applications of Social Network Analysis for User Modeling. In: International Workshop on User Modeling from Social Media / IUI 2012 (2012)

    Google Scholar 

  26. Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Website of National Cancer Institute, http://www.cancer.gov

  28. Yu, H., Kim, P.M., Sprecher, E., Trifonov, V., Gerstein, M.: The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics. PLoS Comput. Biol. 3(4), e59 (2007), doi:10.1371/journal.pcbi.0030059

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Goel, K., Singh, R.R., Iyengar, S., Sukrit (2013). A Faster Algorithm to Update Betweenness Centrality after Node Alteration. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2013. Lecture Notes in Computer Science, vol 8305. Springer, Cham. https://doi.org/10.1007/978-3-319-03536-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03536-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03535-2

  • Online ISBN: 978-3-319-03536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics