Skip to main content

Distributed Community Detection in Dynamic Graphs

(Extended Abstract)

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2013)

Abstract

Inspired by the increasing interest in self-organizing social opportunistic networks, we investigate the problem of distributed detection of unknown communities in dynamic random graphs. As a formal framework, we consider the dynamic version of the well-studied Planted Bisection Model \(\mbox{dyn-}\mathcal{G}(n,p,q)\) where the node set [n] of the network is partitioned into two unknown communities and, at every time step, each possible edge (u,v) is active with probability p if both nodes belong to the same community, while it is active with probability q (with q < < p) otherwise. We also consider a time-Markovian generalization of this model.

We propose a distributed protocol based on the popular Label Propagation Algorithm and prove that, when the ratio p/q is larger than n b (for an arbitrarily small constant b > 0), the protocol finds the right “planted” partition in O(logn) time even when the snapshots of the dynamic graph are sparse and disconnected (i.e. in the case p = Θ(1/n)).

Partially supported by Italian MIUR under the PRIN 2010-11 Project ARS TechnoMedia.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-03578-9_29

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, PODC 2009, pp. 260–269. ACM, New York (2009)

    Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  3. Boppana, R.B.: Eigenvalues and graph bisection: An average-case analysis. In: Proceedings of the 28th Annual Symposium on Foundations of Computer Science, SFCS 1987, pp. 280–285. IEEE Computer Society, Washington, DC (1987)

    Google Scholar 

  4. Bui, T.N., Leighton, F.T., Chaudhuri, S., Sipser, M.: Graph bisection algorithms with good average case behavior. Combinatorica 7(2), 171–191 (1987)

    Article  MathSciNet  Google Scholar 

  5. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing 6(6), 606–620 (2007)

    Article  Google Scholar 

  6. Chaintreau, A., Mtibaa, A., Massoulie, L., Diot, C.: The diameter of opportunistic mobile networks. In: Proceedings of the 2007 ACM CoNEXT Conference, CoNEXT 2007, pp. 12:1–12:12. ACM, New York (2007)

    Google Scholar 

  7. Clementi, A.E., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-markovian dynamic graphs. In: Proceedings of the Twenty-seventh ACM Symposium on Principles of Distributed Computing, PODC 2008, pp. 213–222. ACM, New York (2008)

    Chapter  Google Scholar 

  8. Clementi, A.E., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in stationary markovian evolving graphs. In: IEEE International Symposium on Parallel & Distributed Processing, IPDPS 2009, pp. 1–12. IEEE (2009)

    Google Scholar 

  9. Clementi, A.E.F., Ianni, M.D., Gambosi, G., Natale, E., Silvestri, R.: Distributed community detection in dynamic graphs. Technical report (2013)

    Google Scholar 

  10. Condon, A., Karp, R.M.: Algorithms for graph partitioning on the planted partition model. Random Structures and Algorithms 18(2), 116–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cordasco, G., Gargano, L.: Label propagation algorithm: a semi–synchronous approach. International Journal of Social Network Mining 1(1), 3–26 (2012)

    Article  Google Scholar 

  12. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment 2005 (09), P09008 (2005)

    Google Scholar 

  13. Dyer, M., Frieze, A.: The solution of some random np-hard problems in polynomial expected time. Journal of Algorithms 10(4), 451–489 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: First steps. Social Networks 5(2), 109–137 (1983)

    Article  MathSciNet  Google Scholar 

  16. Hui, P., Yoneki, E., Chan, S.Y., Crowcroft, J.: Distributed community detection in delay tolerant networks. In: Proceedings of 2nd ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture, page 7. ACM (2007)

    Google Scholar 

  17. Kothapalli, K., Pemmaraju, S.V., Sardeshmukh, V.: On the analysis of a label propagation algorithm for community detection. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 255–269. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Liu, X., Murata, T.: Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A: Statistical Mechanics and its Applications 389(7), 1493–1500 (2010)

    Article  Google Scholar 

  19. Mossel, E., Neeman, J., Sly, A.: Stochastic Block Models and Reconstruction. ArXiv e-prints (February 2012)

    Google Scholar 

  20. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2), 026113 (2004)

    Google Scholar 

  21. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106(2007)

    Google Scholar 

  22. Vojnovic, M., Proutiere, A.: Hop limited flooding over dynamic networks. In: 2011 Proceedings IEEE INFOCOM, pp. 685–693. IEEE (2011)

    Google Scholar 

  23. Whitbeck, J., Conan, V., de Amorim, M.D.: Performance of opportunistic epidemic routing on edge-markovian dynamic graphs. IEEE Transactions on Communications 59(5), 1259–1263 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clementi, A., Di Ianni, M., Gambosi, G., Natale, E., Silvestri, R. (2013). Distributed Community Detection in Dynamic Graphs. In: Moscibroda, T., Rescigno, A.A. (eds) Structural Information and Communication Complexity. SIROCCO 2013. Lecture Notes in Computer Science, vol 8179. Springer, Cham. https://doi.org/10.1007/978-3-319-03578-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03578-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03577-2

  • Online ISBN: 978-3-319-03578-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics