Skip to main content

Profit Maximization in Flex-Grid All-Optical Networks

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8179))

Abstract

Abstract. All-optical networks have been largely investigated due to their high data transmission rates. The key to the high speeds in alloptical networks is to maintain the signal in optical form, to avoid the overhead of conversion to and from electrical form at the intermediate nodes. In the traditional WDM technology the spectrum of light that can be transmitted through the optical fiber has been divided into frequency intervals of fixed width with a gap of unused frequencies between them. In this context the term wavelength refers to each of these predefined frequency intervals.

An alternative architecture emerging in very recent studies is to move towards a flexible model in which the usable frequency intervals are of variable width. Every lightpath is assigned a frequency interval which remains fixed through all the links it traverses. Two different lightpaths using the same link have to be assigned disjoint sub-spectra. This technology is termed flex-grid or flex-spectrum.

The introduction of this technology requires the generalization of many optimization problems that have been studied for the fixed-grid technology. Moreover it implies new problems that are irrelevant or trivial in the current technology. In this work we focus on bandwidth utilization in path toplogy and consider two wavelength assignment, or in graph theoretic terms coloring, problems where the goal is to maximize the total profit. We obtain bandwidth maximization as a special case.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-03578-9_29

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ramaswami, R., Sivarajan, K.N., Sasaki, G.H.: Optical Networks: A Practical Perspective. Kaufmann Publisher Inc., San Francisco (2009)

    Google Scholar 

  2. Klasing, R.: Methods and problems of wavelength-routing in all-optical networks. In: Proceeding of the MFCS 1998 Workshop on Communication, Brno, Czech Republic, August 24-25, pp. 1–9 (1998)

    Google Scholar 

  3. Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. Comm. Mag. 47, 66–73 (2009)

    Article  Google Scholar 

  4. Gerstel, O.: Realistic approaches to scaling the IP network using optics. In: Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), pp. 1–3 (March 2011)

    Google Scholar 

  5. Gerstel, O.: Flexible use of spectrum and photonic grooming. In: Photonics in Switching, OSA (Optical Society of America) Technical Digest, page paper PMD3 (2010)

    Google Scholar 

  6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57. North-Holland Publishing Co., Amsterdam (2004)

    MATH  Google Scholar 

  7. Garey, M., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. Freeman (1979)

    Google Scholar 

  8. Halldórsson, M.M., Kortsarz, G.: Multicoloring: Problems and techniques. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 25–41. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Buchsbaum, A.L., Karloff, H., Kenyon, C., Reingold, N., Thorup, M.: Opt versus load in dynamic storage allocation. SIAM Journal of Computing 33(3), 632–646 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative cycles. J. ACM 36(4), 873–886 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shalom, M., Wong, P.W.H., Zaks, S. (2013). Profit Maximization in Flex-Grid All-Optical Networks. In: Moscibroda, T., Rescigno, A.A. (eds) Structural Information and Communication Complexity. SIROCCO 2013. Lecture Notes in Computer Science, vol 8179. Springer, Cham. https://doi.org/10.1007/978-3-319-03578-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03578-9_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03577-2

  • Online ISBN: 978-3-319-03578-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics