Abstract
Burn probability maps (BPMs) are among the most effective tools to support strategic wildfire and fuels management. In such maps, an estimate of the probability to be burned by a wildfire is assigned to each point of a raster landscape. A typical approach to build BPMs is based on the explicit propagation of thousands of fires using accurate simulation models. However, given the high number of required simulations, for a large area such a processing usually requires high performance computing. In this paper, we propose a multi-GPU approach for accelerating the process of BPM building. The paper illustrates some alternative implementation strategies and discusses the achieved speedups on a real landscape.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carmel, Y., Paz, S., Jahashan, F., Shoshany, M.: Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management 257(1), 370–377 (2009)
Ager, A., Finney, M.: Application of wildfire simulation models for risk analysis. In: Geophysical Research Abstracts. EGU2009-5489, EGU General Assembly, vol. 11 (2009)
Sullivan, A.: Wildland surface fire spread modelling, 1990-2007. 3: Simulation and mathematical analogue models. International Journal of Wildland Fire 18, 387–403 (2009)
Lopes, A.M.G., Cruz, M.G., Viegas, D.X.: Firestation - an integrated software system for the numerical simulation of fire spread on complex topography. Environmental Modelling and Software 17(3), 269–285 (2002)
Trunfio, G.A.: Predicting wildfire spreading through a hexagonal cellular automata model. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 385–394. Springer, Heidelberg (2004)
Peterson, S.H., Morais, M.E., Carlson, J.M., Dennison, P.E., Roberts, D.A., Moritz, M.A., Weise, D.R.: Using HFIRE for spatial modeling of fire in shrublands. Technical Report PSW-RP-259, U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA (2009)
Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for simulating wildfire spread through cellular automata. ACM Transactions on Modeling and Computer Simulation 22(1), 1–26 (2011)
Avolio, M.V., Di Gregorio, S., Lupiano, V., Trunfio, G.A.: Simulation of wildfire spread using cellular automata with randomized local sources. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 279–288. Springer, Heidelberg (2012)
Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Technical Report INT-115, U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT (1972)
Alexander, M.: Estimating the length-to-breadth ratio of elliptical forest fire patterns. In: Proc. 8th Conf. Fire and Forest Meteorology, pp. 287–304 (1985)
Rongo, R., Spataro, W., D’Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio, S.: Lava flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt Etna volcano. Fundamenta Informaticae 87(2), 247–267 (2008)
Rongo, R., Lupiano, V., Avolio, M.V., D’Ambrosio, D., Spataro, W., Trunfio, G.A.: Cellular automata simulation of lava flows - applications to civil defense and land use planning with a cellular automata based methodology. In: Proceedings of SIMULTECH 2011 (2011)
Filippone, G., Spataro, W., Spingola, G., D’Ambrosio, D., Rongo, R., Perna, G., Di Gregorio, S.: GPGPU programming and cellular automata: Implementation of the SCIARA lava flow simulation code. In: 23rd European Modeling and Simulation Symposium (EMSS), Rome, Italy, September 12-14 (2011)
D’Ambrosio, D., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.: Cellular automata and GPGPU: an application to lava flow modeling. International Journal of Grid and High Performance Computing 4(3), 30–47 (2012)
CUDA C Programming Guide: v. 3.2 (2010)
Anderson, H.: Predicting wind-driven wildland fire size and shape. Technical Report INT-305, U.S Department of Agriculture, Forest Service (1983)
Ager, A.A., Vaillant, N.M., Finney, M.A.: A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. Forest Ecology and Management 259(8), 1556–1570 (2010)
Xue, H., Gu, F., Hu, X.: Data assimilation using sequential monte carlo methods in wildfire spread simulation. ACM Trans. Model. Comput. Simul. 22(4), 1–25 (2012)
Crisci, G.M., Avolio, M.V., Behncke, B., D’Ambrosio, D., Di Gregorio, S., Lupiano, V., Neri, M., Rongo, R., Spataro, W.: Predicting the impact of lava flows at Mount Etna, Italy. Journal of Geophysical Research: Solid Earth 115(B4) (2010)
Blecic, I., Cecchini, A., Trunfio, G.A.: A general-purpose geosimulation infrastructure for spatial decision support. Transactions on Computational Science 6, 200–218 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
D’Ambrosio, D., Di Gregorio, S., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.A. (2014). A Multi-GPU Approach to Fast Wildfire Hazard Mapping. In: Obaidat, M., Filipe, J., Kacprzyk, J., Pina, N. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-03581-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-03581-9_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03580-2
Online ISBN: 978-3-319-03581-9
eBook Packages: EngineeringEngineering (R0)