Skip to main content

Abstract

Burn probability maps (BPMs) are among the most effective tools to support strategic wildfire and fuels management. In such maps, an estimate of the probability to be burned by a wildfire is assigned to each point of a raster landscape. A typical approach to build BPMs is based on the explicit propagation of thousands of fires using accurate simulation models. However, given the high number of required simulations, for a large area such a processing usually requires high performance computing. In this paper, we propose a multi-GPU approach for accelerating the process of BPM building. The paper illustrates some alternative implementation strategies and discusses the achieved speedups on a real landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmel, Y., Paz, S., Jahashan, F., Shoshany, M.: Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management 257(1), 370–377 (2009)

    Article  Google Scholar 

  2. Ager, A., Finney, M.: Application of wildfire simulation models for risk analysis. In: Geophysical Research Abstracts. EGU2009-5489, EGU General Assembly, vol. 11 (2009)

    Google Scholar 

  3. Sullivan, A.: Wildland surface fire spread modelling, 1990-2007. 3: Simulation and mathematical analogue models. International Journal of Wildland Fire 18, 387–403 (2009)

    Article  Google Scholar 

  4. Lopes, A.M.G., Cruz, M.G., Viegas, D.X.: Firestation - an integrated software system for the numerical simulation of fire spread on complex topography. Environmental Modelling and Software 17(3), 269–285 (2002)

    Article  Google Scholar 

  5. Trunfio, G.A.: Predicting wildfire spreading through a hexagonal cellular automata model. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 385–394. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Peterson, S.H., Morais, M.E., Carlson, J.M., Dennison, P.E., Roberts, D.A., Moritz, M.A., Weise, D.R.: Using HFIRE for spatial modeling of fire in shrublands. Technical Report PSW-RP-259, U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA (2009)

    Google Scholar 

  7. Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for simulating wildfire spread through cellular automata. ACM Transactions on Modeling and Computer Simulation 22(1), 1–26 (2011)

    Article  Google Scholar 

  8. Avolio, M.V., Di Gregorio, S., Lupiano, V., Trunfio, G.A.: Simulation of wildfire spread using cellular automata with randomized local sources. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 279–288. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Technical Report INT-115, U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT (1972)

    Google Scholar 

  10. Alexander, M.: Estimating the length-to-breadth ratio of elliptical forest fire patterns. In: Proc. 8th Conf. Fire and Forest Meteorology, pp. 287–304 (1985)

    Google Scholar 

  11. Rongo, R., Spataro, W., D’Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio, S.: Lava flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt Etna volcano. Fundamenta Informaticae 87(2), 247–267 (2008)

    MATH  Google Scholar 

  12. Rongo, R., Lupiano, V., Avolio, M.V., D’Ambrosio, D., Spataro, W., Trunfio, G.A.: Cellular automata simulation of lava flows - applications to civil defense and land use planning with a cellular automata based methodology. In: Proceedings of SIMULTECH 2011 (2011)

    Google Scholar 

  13. Filippone, G., Spataro, W., Spingola, G., D’Ambrosio, D., Rongo, R., Perna, G., Di Gregorio, S.: GPGPU programming and cellular automata: Implementation of the SCIARA lava flow simulation code. In: 23rd European Modeling and Simulation Symposium (EMSS), Rome, Italy, September 12-14 (2011)

    Google Scholar 

  14. D’Ambrosio, D., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.: Cellular automata and GPGPU: an application to lava flow modeling. International Journal of Grid and High Performance Computing 4(3), 30–47 (2012)

    Article  Google Scholar 

  15. CUDA C Programming Guide: v. 3.2 (2010)

    Google Scholar 

  16. Anderson, H.: Predicting wind-driven wildland fire size and shape. Technical Report INT-305, U.S Department of Agriculture, Forest Service (1983)

    Google Scholar 

  17. Ager, A.A., Vaillant, N.M., Finney, M.A.: A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. Forest Ecology and Management 259(8), 1556–1570 (2010)

    Article  Google Scholar 

  18. Xue, H., Gu, F., Hu, X.: Data assimilation using sequential monte carlo methods in wildfire spread simulation. ACM Trans. Model. Comput. Simul. 22(4), 1–25 (2012)

    Article  Google Scholar 

  19. Crisci, G.M., Avolio, M.V., Behncke, B., D’Ambrosio, D., Di Gregorio, S., Lupiano, V., Neri, M., Rongo, R., Spataro, W.: Predicting the impact of lava flows at Mount Etna, Italy. Journal of Geophysical Research: Solid Earth 115(B4) (2010)

    Google Scholar 

  20. Blecic, I., Cecchini, A., Trunfio, G.A.: A general-purpose geosimulation infrastructure for spatial decision support. Transactions on Computational Science 6, 200–218 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

D’Ambrosio, D., Di Gregorio, S., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.A. (2014). A Multi-GPU Approach to Fast Wildfire Hazard Mapping. In: Obaidat, M., Filipe, J., Kacprzyk, J., Pina, N. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-03581-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03581-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03580-2

  • Online ISBN: 978-3-319-03581-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics