Skip to main content

Numerical Study of Turbulent Boundary-Layer Flow Induced by a Sphere Above a Flat Plate

  • Chapter
Book cover Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 256))

Abstract

The flow past a three-dimensional obstacle on a flat plate is one of the key problems in the boundary-layer flows, which shows a significant value in industry applications. A direct numerical study of flow past a sphere above a flat plate is investigated. The immersed boundary (IB) method with multiple-direct forcing scheme is used to couple the solid sphere with fluid. The detail information of flow field and vortex structure is obtained. The velocity and pressure distributions are illuminated, and the recirculation region with the length of which is twice as much as the sphere diameter is observed in the downstream of the sphere. The effects of the sphere on the boundary layer are also explored, including the velocity defect, the turbulence intensity and the Reynolds stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schlichting, H.: Experimentelle Untersuchungen Zum Ranhigkeitsproblem. Ing. Arch. 7, 1–34 (1936)

    Article  Google Scholar 

  2. Klemin, A., Schaefer, E.B., Beerer, J.G.: Aerodynamics of the Perisphere and Trylon at World’s Fair. Trans. Am. Soc. Civ. Eng. 2042, 1449–1472 (1939)

    Google Scholar 

  3. Okamoto, S.: Turbulent Shear Flow Behind a Sphere Placed On a Plane Boundary. Turbulent Shear Flows 2, 246–256 (1980)

    Google Scholar 

  4. Takayuki, T.: Flow Around a Sphere in a Plane Turbulent Boundary Layer. Journal of Wind Engineering and Industrial Aerodynamics 96, 779–792 (2008)

    Article  Google Scholar 

  5. Zeng, L., Balachandar, S., Fischer, P.: Interactions of a Stationary Finite-Sized Particle with Wall Turbulence. Journal of Fluid Mechanics 594, 271–305 (2008)

    Article  MATH  Google Scholar 

  6. Charles, S.: Peskin: Flow Patterns Around Heart Valves: A Numerical Method. Journal of Computational Physics 10, 252–271 (1972)

    Article  MATH  Google Scholar 

  7. Goldstein, D., Handler, R., Sirovich, L.: Modeling a No-Slip Flow Boundary with an External Force Field. Journal of Computational Physics 105, 354–366 (1993)

    Article  MATH  Google Scholar 

  8. Le, D.V., Khoo, B.C., Lim, K.M.: An Implicit-Forcing Immersed Boundary Method for Simulating Viscous Flows in Irregular Domains. Computer Methods in Applied Mechanics and Engineering 197, 2119–2130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mittal, R., Iaccarino, G.: Immersed Boundary Methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  10. Mohd-Yusof, J.: Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries. CTR Annual Research Briefs, 317–327 (1997)

    Google Scholar 

  11. Xu, S., Wang, Z.J.: A 3D Immersed Interface Method for Fluid–Solid Interaction. Computer Methods in Applied Mechanics and Engineering 197, 2068–2086 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Le, D.V., Khoo, B.C., Peraire, J.: An Immersed Interface Method for Viscous Incompressible Flows Involving Rigid and Flexible Boundaries. Journal of Computational Physics 220, 109–138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, Z., Fan, J., Luo, K.: Combined Multi-Direct Forcing and Immersed Boundary Method for Simulating Flows with Moving Particles. International Journal of Multiphase Flow 34, 283–302 (2008)

    Article  Google Scholar 

  14. Luo, K., Jin, J., Zheng, Y.: Direct Numerical Simulation of Particle Dispersion in Gas-Solid Compressible Turbulent Jets. Chinese Journal of Chemical Engineering 13, 161–166 (2005)

    Google Scholar 

  15. Zhou, Z., Wang, Z.L., Fan, J.R.: Direct Numerical Simulation of the Transitional Bounda-ry-Layer Flow Induced by an Isolated Hemispherical Roughness Element. Comput. Methods Appl. Mech. Engrg. 199, 1573–1582 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, K., Wang, Z., Fan, J.: Full-Scale Solutions to Particle-Laden Flows: Multidirect Forcing and Immersed Boundary Method. Physical Review E 76, 066709 (2007)

    Google Scholar 

  17. Wang, Z., Fan, J., Cen, K.: Immersed Boundary Method for the Simulation of 2D Viscous Flow Based On Vorticity–Velocity Formulations. Journal of Computational Physics 228, 1504–1520 (2009)

    Article  MATH  Google Scholar 

  18. Wang, Z.L., Fan, J.R., Luo, K.: Immersed Boundary Method for the Simulation of Flows with Heat Transfer. International Journal of Heat and Mass Transfer 52, 4510–4518 (2009)

    Article  MATH  Google Scholar 

  19. Luo, K., Zheng, Y.Q., Fan, J.R.: Interaction Between Large-Scale Vortex Structure and Dispersed Particles in a Three Dimensional Mixing Layer. Chinese Journal of Chemical Engineering 11, 377–382 (2003)

    Google Scholar 

  20. Wang, Z., Fan, J., Luo, K.: Numerical Study of Solid Particle Erosion On the Tubes Near the Side Walls in a Duct with Flow Past an Aligned Tube Bank. AIChE J. 56, 66–78 (2010)

    Article  Google Scholar 

  21. Wang, Z.L., Fan, J.R., Luo, K.: Parallel Computing Strategy for the Simulation of Particulate Flows with Immersed Boundary Method. Science in China Series E: Technological Sciences 51, 1169–1176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peskin, C.S.: The Immersed Boundary Method. Acta Numerica 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Griffith, B.E., Peskin, C.S.: On the Order of Accuracy of the Immersed Boundary Method: Higher Order Convergence Rates for Sufficiently Smooth Problems. Journal of Computational Physics 208, 75–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Uhlmann: An Immersed Boundary Method with Direct Forcing for the Simulation of Particulate Flows. Journal of Computational Physics 209, 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Musker, A.J.: Explicit Expression for the Smooth Wall Velocity Distribution in a Turbulent Boundary Layer. AIAA Journal 17, 655–657 (1979)

    Article  MATH  Google Scholar 

  26. Orlanski, A.: Simple Boundary Condition for Unbounded Hyperbolic Flows. Journal of Computational Physics 21, 251–269 (1976)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, H., Wei, A., Luo, K., Fan, J. (2014). Numerical Study of Turbulent Boundary-Layer Flow Induced by a Sphere Above a Flat Plate. In: Obaidat, M., Filipe, J., Kacprzyk, J., Pina, N. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-03581-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03581-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03580-2

  • Online ISBN: 978-3-319-03581-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics