Abstract
An novel quantum secret sharing (QSS) scheme is proposed based on Chinese Remainder Theory (CRT) with hyperchaotic encryption algorithm. The usage of hyperchaotic encryption strengthens the security of the quantum message. In addition, this scheme has high source capacity and convenience due to the utilization of GHZ measurement and high-dimension quantum channel. The analysis shows the presented protocol can resist the attacks from both outside eavesdroppers and inside dishonest participants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(1829) (1999)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)
Deng, F.G., Long, G.L., Zhou, H.Y.: An effcient quantum secret sharing scheme with Einstein-Podolsky-Rosen Pairs. Phys. Lett. A 340, 43 (2005)
Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)
Yang, C.P., Gea-Banacloche, J.: Teleportation of rotations and receiver-encoded secret sharing. J. Opt. B: Quantum Semiclass. Opt. 3, 407 (2001)
Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)
Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)
Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)
Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342, 60 (2005)
Bandyopadhyay, S.: Teleportation and Secret Sharing with Pure Entangled States. Phys. Rev. A 62, 012308 (2000)
Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)
Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)
Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420 (2004)
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)
Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)
Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)
Zhang, Z.J.: Controlled teleportation of an arbitrary n -qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 342, 60 (2005)
Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)
Wang, J., Zhang, Q., Tang, C.J.: Multiparty quantum secret sharing of secure direct communication using teleportation. Commun. Theor. Phys. 47, 454 (2007)
Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690 (2008)
Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)
Markham, D., Sanders, C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)
Sarvepalli, P.K., Klappenecker, A.: Sharing classical secrets with Calderbank-Shor-Steane codes. Phys. Rev. A 80, 022321 (2009)
Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett 103, 020503 (2009)
Guo, Y., Zeng, G.H.: Encryption-based networking quantum teleportation with triplet Greenberger-Horne-Zeilinger States. Int. J. Quant. Infor. 8(5), 765 (2010)
Cuquet, M., Calsamiglia, J.: Limited-path-length entanglement percolation in quantum complex networks. Phys. Rev. A 83, 032319 (2011)
Pemberton-Ross, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)
Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Informat. Theory 29, 208 (1983)
Shi, R.H., Sun, Q., Guo, Y., Lee, M.H.: Quantum Secret Sharing Based on Chienese Remainder Theorem. Commun. Theor. Phys. 55, 573–578 (2011)
Gao, G.: Quantum Secret Communication by Using GHZ State in High-Dimensional Hilbert Space. Commun. Theor. Phys. 50, 368–370 (2008)
Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23 (2006)
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)
Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Shi, R., Kang, Y., Zhang, Z. (2013). Quantum Secret Sharing Based on Chinese Remainder Theorem in Hyperchaotic System. In: Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds) Cyberspace Safety and Security. CSS 2013. Lecture Notes in Computer Science, vol 8300. Springer, Cham. https://doi.org/10.1007/978-3-319-03584-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-03584-0_31
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03583-3
Online ISBN: 978-3-319-03584-0
eBook Packages: Computer ScienceComputer Science (R0)