Skip to main content

A GIS-Based Process for Calculating Visibility Impact from Buildings During Transmission Line Routing

  • Chapter
  • First Online:
Connecting a Digital Europe Through Location and Place

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Planning linear infrastructures can be a tedious task for regions characterized by complex topography, natural constraints, high density population areas, and strong local opposition. These aspects make the planning of new transmission lines complex and time consuming. The method proposed in this work uses Multi-Criteria Analysis and Least-Cost Path approaches combined with a viewshed analysis in order to identify suitable routes. The visual impact is integrated, as a cost surface, into the process and combined with natural and anthropological constraints. The cumulated visibility of each raster cell is estimated as the sum of the weighted distance between buildings and the cell itself. In order to reduce the typical zig-zags resulting from Least-Cost Path methods, a weighted straightening approach is applied. A sensitivity analysis of the weights of the visibility and the straightening is carried out in order to assess different scenarios and to compare the existing TL path to the proposed ones. The method is applied to a case study where an old transmission line needs to be replaced by a new one and the local grid operator needs to identify feasible routes. A set of 30 routes is identified and most of them have a lower visibility that the existing path but, only some of them present a comparable complexity to be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ArcGIS installed on a desktop computer, RAM 8GB, CPU 8 core 3.3GHz

References

  • Atkinson DM, Deadman P, Dudycha D et al (2005) Multi-criteria evaluation and least cost path analysis for an arctic all-weather road. Appl Geogr 25(4):287–307. doi:10.1016/j.apgeog.2005.08.001

    Article  Google Scholar 

  • Bahrenberg G, Giese E, Nipper J (1999) Statistische methoden in der geographie 1. Stuttgart

    Google Scholar 

  • Berry J (2004) Beyond mapping III ‘straightening’ conversions improve optimal paths. Geo World 17:18–19

    Google Scholar 

  • Berry JK (2006) Beyond mapping III-Use LCP procedures to center optimal paths. http://www.innovativegis.com/basis/BeyondMappingSeries/BeyondMapping_III/Topic8/FurtherReading_Topic8.htm#Section2

  • Bevanger K, Bartzke G, Clausen S et al (2010) Optimal design and routing of power lines; ecological, technical and eco-nomic perspectives (OPTIPOL) Kjetil Bevanger edn. NINA Publications, Norwegian Institute for Nature Research, Trondheim, NINA Report 619, pp 51

    Google Scholar 

  • Church RL, Loban SR, Lombard K (1992) An interface for exploring spatial alternatives for a corridor location problem. Comput Geosci 18(8):1095–1105. doi:10.1016/0098-3004(92)90023-K

  • Cotton M, Devine-Wright P (2012) Putting pylons into place: a uk case study of public perspectives on the impacts of high voltage overhead transmission lines. J Environ Plan Manage 56(8): 1225–1245. doi:10.1080/09640568.2012.716756

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Mathematik 1:269–271

    Article  Google Scholar 

  • Douglas DH (1994) Least-cost path in GIS using an accumulated cost surface and slopelines. Cartographica: Int J Geogr Inf Geovisualization 31(3):37–51. doi:10.3138/D327-0323-2JUT-016M

  • Eppstein D (1998) Finding the k shortest paths. SIAM J Comput 28(2):652–673. doi:10.1137/S0097539795290477

    Article  Google Scholar 

  • French S, Houston G, Johnson C et al (2008) EPRI-GTC tailored collaboration project: a standardized methodology for siting overhead electric transmission lines. In: Goodrich-Mahoney JW, Abrahamson LP, Ballard JL, Tikalsky SM (eds) Environment concerns in rights-of-way management 8th international symposium. Elsevier, Amsterdam, pp 221–235. doi:10.1016/B978-044453223-7.50029-0

  • Furby L, Slovic P, Fischhoff B et al (1988) Public perceptions of electric power transmissionlines. J Environ Psychol 8(1):19–43. doi:10.1016/S0272-4944

    Article  Google Scholar 

  • Hadrian DR, Bishop ID, Mitcheltree R (1988) Automated mapping of visual impacts in utility corridors. Landscape Urban Plan 16(3):261–282. doi:10.1016/0169-2046(88)90073-4

    Article  Google Scholar 

  • Hirst E, Kirby B (2001) Key transmission planning issues. Electr J 14(8):59–70. doi:10.1016/S1040-6190(01)00239-1

    Article  Google Scholar 

  • Huber D, Church R (1985) Transmission corridor location modeling. J Transp Eng 111(2):114–130. doi:10.1061/(ASCE)0733-947X(1985)111:2(114)

    Article  Google Scholar 

  • Husain F, Sulaiman NA, Hashim KA et al (2012) Multi-criteria selection for TNB transmission line route using AHP and GIS. In: Paper presented at the international conference on system engineering and technology (ICSET), Bandung, 11–12 Sept 2012

    Google Scholar 

  • Jankowski P, Richard L (1994) Integration of gis-based suitability analysis and multicriteria evaluation in a spatial decision support system for route selection. Environ Plan B: Plan Des 21(3): 323–340

    Google Scholar 

  • Jewell W, Grossardt T, Bailey K et al (2010) A new method for public involvement in electric transmission line routing. In: Transmission and distribution conference and exposition, 2010 IEEE PES, 19–22 April 2010, pp 1–1. doi:10.1109/TDC.2010.5484237

  • Lake MW, Woodman PE, Mithen SJ (1998) Tailoring gis software for archaeological applications: an example concerning viewshed analysis. J Archaeol Sci 25(1):27–38. doi:10.1006/jasc.1997.0197

  • Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New York

    Google Scholar 

  • Marshall R, Baxter R (2002) Strategic routeing and environmental impact assessment for overhead electrical transmission lines. J Environ Plan Manage 45(5):747–764. doi:10.1080/0964056022000013101

    Article  Google Scholar 

  • McCalley JD, Krishnan V (2014) A survey of transmission technologies for planning long distance bulk transmission overlay in us. Int J Electr Power Energ Syst 54:559–568. doi:10.1016/j.ijepes.2013.08.008

    Article  Google Scholar 

  • Mills A, Wiser R, Porter K (2012) The cost of transmission for wind energy in the united states: a review of transmission planning studies. Renew Sustain Energy Rev 16(1):1–19. doi:10.1016/j.rser.2011.07.131

  • Monteiro C, Miranda V, Ramirez-Rosado IJ et al (2005) Compromise seeking for power line path selection based on economic and environmental corridors. IEEE Trans Power Syst 20(3):1422–1430. doi:10.1109/TPWRS.2005.852149

    Article  Google Scholar 

  • Nohl W (1993) Beeinträchtigungen des Landschaftsbildes durch mastenartige Eingriffe. München

    Google Scholar 

  • Ogburn DE (2006) Assessing the level of visibility of cultural objects in past landscapes. J Archaeol Sci 33(3):405–413. doi:10.1016/j.jas.2005.08.005

    Article  Google Scholar 

  • Paul H-U, Uther D, Neuhoff M et al (2004) GIS-gestütztes Verfahren zur Bewertung visueller Eingriffe durch Hochspannungsfreileitungen. Naturschutz und Landschaftsplanung: Zeitschrift für angewandte Ökologie, vol 36

    Google Scholar 

  • Sessions J, Akay A, Murphy G et al (2006) Road and harvesting planning and operations. In: Shao G, Reynolds K (eds) Computer applications in sustainable forest management, vol 11. Springer, Netherlands, pp 83–99. doi:10.1007/978-1-4020-4387-1_5

  • Stucky JLD (1998) On applying viewshed analysis for determining least-cost paths on digital elevation models. Int J Geogr Inf Sci 12(8):891–905. doi:10.1080/136588198241554

    Article  Google Scholar 

  • Towers G (1997) Gis versus the community: siting power in southern west virginia. Appl Geogr 17(2):111–125. doi:10.1016/S0143-6228(97)00001-5

    Article  Google Scholar 

  • Towers G (2000) Applying the political geography of scale: grassroots strategies and environmental justice. Prof Geogr 52(1):23–36. doi:10.1111/0033-0124.00202

    Article  Google Scholar 

  • Xu J, Lathrop RG (1995) Improving simulation accuracy of spread phenomena in a raster-based geographic information system. Int J Geogr Inf Syst 9(2):153–168. doi:10.1080/02693799508902031

    Article  Google Scholar 

  • Yu C, Lee JAY, Munro-Stasiuk MJ (2003) Research article: extensions to least-cost path algorithms for roadway planning. Int J Geogr Inf Sci 17(4):361–376. doi:10.1080/1365881031000072645

    Article  Google Scholar 

  • Zhenpei L, Ping L, Ming W et al (2010) Application of ArcGIS pipeline data model and GIS in digital oil and gas pipeline. In: 18th international conference on geoinformatics, 18–20 June 2010. pp 1–5. doi:10.1109/GEOINFORMATICS.2010.5567619

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Grassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grassi, S., Friedli, R., Grangier, M., Raubal, M. (2014). A GIS-Based Process for Calculating Visibility Impact from Buildings During Transmission Line Routing. In: Huerta, J., Schade, S., Granell, C. (eds) Connecting a Digital Europe Through Location and Place. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-03611-3_22

Download citation

Publish with us

Policies and ethics