Skip to main content

Mining Frequent Spatio-Temporal Patterns in Wind Speed and Direction

  • Chapter
  • First Online:
Connecting a Digital Europe Through Location and Place

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

  • 1085 Accesses

Abstract

Wind is a dynamic geographic phenomenon that is often characterized by its speed and by the direction from which it blows. The cycle’s effect of heating and cooling on the Earth’s surface causes the wind speed and direction to change throughout the day. Understanding the changeability of wind speed and direction simultaneously in long term time series of wind measurements is a challenging task. Discovering such pattern highlights the recurring of speed together with direction that can be extracted in specific chronological order of time. In this chapter, we present a novel way to explore wind speed and direction simultaneously using sequential pattern mining approach for detecting frequent patterns in spatio-temporal wind datasets. The Linear time Closed pattern Miner sequence (LCMseq) algorithm is constructed to search for significant sequential patterns of wind speed and direction simultaneously. Then, the extracted patterns were explored using visual representation called TileVis and 3D wind rose in order to reveal any valuable trends in the occurrences patterns. The applied methods demonstrated an improvement way of understanding of temporal characteristics of wind resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal R, Srikant R (1995) Mining sequential patterns In: 11th International Conference on Data Engineering, IEEE Computer Society, Los Alamitos, Taipei, Taiwan, Mar 1995, pp 3–14

    Google Scholar 

  • Andrienko N, Andrienko G (eds) (2006) Exploratory analysis of spatial and temporal data—a systematic approach. Springer, Berlin

    Google Scholar 

  • Barszcz T, Bielecka M, Bielecki A, Wójcik M (2012) Wind speed modelling using weierstrass function fitted by a genetic algorithm. J Wind Eng Ind Aerod 109:68–78. doi:10.1016/j.jweia.2012.06.007

    Article  Google Scholar 

  • Bertin J (1967) Semiologie graphique. Les diagrammes, les reseaux, les cartes. Haye-Paris, Mouton et Gouthier-Villar, 2 ed. 1973

    Google Scholar 

  • Buddhakulsomsiri J, Zakarian A (2009) Sequential pattern mining algorithm for automotive warranty data. Comput Ind Eng 57(1):137–147. doi:10.1016/j.cie.2008.11.006

    Article  Google Scholar 

  • Cabello M, Orza JAG (2010) Wind speed analysis in the province of alicante, Spain. Potential for small-scale wind turbines. Renew Sustain Energ Rev 14(9):3185–3191. doi:10.1016/j.rser.2010.07.002

    Article  Google Scholar 

  • Chang JH (2011) Mining weighted sequential patterns in a sequence database with a time-interval weight. Know Based Syst 24(1):1–9. doi:10.1016/j.knosys.2010.03.003

    Article  Google Scholar 

  • Chen E, Cao H, Li Q, Qian T (2008) Efficient strategies for tough aggregate constraint-based sequential pattern mining. Inf Sci 178(6):1498–1518. doi:10.1016/j.ins.2007.10.014

    Article  Google Scholar 

  • Colak I, Sagiroglu S, Yesilbudak M (2012) Data mining and wind power prediction: a literature review. Renew Energ 46:241–247. doi:10.1016/j.renene.2012.02.015

    Article  Google Scholar 

  • de Prada Gil M, Gomis-Bellmunt O, Sumper A, Bergas-Jané J (2012) Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequencies considering wake effects. Energy 37(1):455–468. doi:10.1016/j.energy.2011.11.010

    Article  Google Scholar 

  • Erdem E, Shi J (2011) ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energ 88(4):1405–1414. doi:10.1016/j.apenergy.2010.10.031

    Article  Google Scholar 

  • Floratou A, Tata S, Patel JM (2010) Efficient and accurate discovery of patterns in sequence datasets. In: Data Engineering (ICDE), 2010 IEEE 26th International Conference on, 1–6 Mar 2010, pp 461–472. doi:10.1109/ICDE.2010.5447843

  • Grosser H, Britos P, García-Martínez R (2005) Detecting fraud in mobile telephony using neural networks. In: Ali M, Esposito F (eds) Innovations in Applied Artificial Intelligence. Lecture Notes in Computer Science, vol 3533. Springer, Berlin, pp 613–615. doi:10.1007/11504894_85

  • Han J, Kamber M (2001) Data mining: concepts and techniques. In: The Morgan Kaufmann Series in Data Management Systems JG, Series Editor (ed). Morgan Kaufmann Publishers, San Diego: Academic Press, p 550

    Google Scholar 

  • Herrera JL, Piedracoba S, Varela RA, Rosón G (2005) Spatial analysis of the wind field on the western coast of galicia (NW Spain) from in situ measurements. Cont Shelf Res 25(14):1728–1748. doi:10.1016/j.csr.2005.06.001

    Article  Google Scholar 

  • Ho Q, Lundblad P, Åström T, Jern M (2011) A Web-enabled visualization toolkit for geovisual analytics. In: Proceedings of SPIE, the International Society for Optical Engineering: SPIE: Electronic Imaging Science and Technology, Visualization and Data Analysis 7868: doi:10.1117/12.872250

  • Huang H, Ooka R, Liu N, Zhang L, Deng Z, Kato S (2009) Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions. Fire Saf J 44(3):311–321. doi:10.1016/j.firesaf.2008.07.005

    Article  Google Scholar 

  • Jian P, Jiawei H, Mortazavi-Asl B, Jianyong W, Pinto H, Qiming C, Dayal U, Mei-Chun H (2004) Mining sequential patterns by pattern-growth: the PrefixSpan approach. Know Data Eng IEEE Trans 16(11):1424–1440. doi:10.1109/TKDE.2004.77

    Article  Google Scholar 

  • Jung J, Tam K-S (2013) A frequency domain approach to characterize and analyze wind speed patterns. Appl Energ 103:435–443. doi:10.1016/j.apenergy.2012.10.006

    Article  Google Scholar 

  • Keim DA (2002) Information visualization and visual data mining. Vis Comput Graph IEEE Trans 8(1):1–8. doi:10.1109/2945.981847

    Article  Google Scholar 

  • Keim DA, Hao MC, Dayal U, Hsu M (2002) Pixel bar charts: a visualization technique for very large multi-attribute data sets\(\dagger \). Inf Vis 1(1):20–34. doi: 10.1057/palgrave.ivs.9500003

    Article  Google Scholar 

  • Kuo RJ, Chao CM, Liu CY (2009) Integration of K-means algorithm and AprioriSome algorithm for fuzzy sequential pattern mining. Appl Soft Comput 9(1):85–93. doi:10.1016/j.asoc.2008.03.010

    Article  Google Scholar 

  • Li C, Yang Q, Wang J, Li M (2012) Efficient mining of gap-constrained subsequences and its various applications. ACM Trans Knowl Discov Data 6(1):1–39. doi:10.1145/2133360.2133362

    Article  Google Scholar 

  • MacEachren AM (ed) (2004) How maps work: representation, visualization, and design. Guilford Press, New York

    Google Scholar 

  • Mukulo BM, Ngaruiya JM, Kamau JN (2014) Determination of wind energy potential in the mwingi-kitui plateau of kenya. Renew Energ 63:18–22. doi:10.1016/j.renene.2013.08.042

    Article  Google Scholar 

  • Nakahara T, Uno T, Yada K (2010) Extracting promising sequential patterns from RFID data using the LCM sequence. In: Setchi R, Jordanov I, Howlett R, Jain L (eds). Knowledge-Based and Intelligent Information and Engineering Systems. Lecture Notes In Computer Science, vol 6278. Springer, Berlin, pp 244–253. doi:10.1007/978-3-642-15393-8_28

  • Raïssi C, Pei J (2011) Towards bounding sequential patterns. Paper presented at the Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, San Diego, California, USA, 21–24, Aug 2001

    Google Scholar 

  • Şahin AD (2004) Progress and recent trends in wind energy. Prog Energ Combust Sci 30(5):501–543. doi:10.1016/j.pecs.2004.04.001

    Article  Google Scholar 

  • Sallaberry A, Pecheur N, Bringay S, Roche M, Teisseire M (2011) Sequential patterns mining and gene sequence visualization to discover novelty from microarray data. J Biomed Inf 44(5):760–774. doi:10.1016/j.jbi.2011.04.002

    Article  Google Scholar 

  • Samuel G, Alexander L, Nils G, Hanspeter P, Marc S (2013) LineUp: visual analysis of multi-attribute Rankings. IEEE Trans Visual Comput Graph (InfoVis ’13) 19(12)

    Google Scholar 

  • Schumann H, Tominski C (2011) Analytical, visual and interactive concepts for geo-visual analytics. J Vis Lang Comput 22(4):257–267. doi:10.1016/j.jvlc.2011.03.002

    Article  Google Scholar 

  • Soler-Bientz R, Watson S, Infield D (2009) Preliminary study of long-term wind characteristics of the mexican yucatán peninsula. Energ Convers Manage 50(7):1773–1780. doi:10.1016/j.enconman.2009.03.018

    Article  Google Scholar 

  • Uno T, Kiyomi M, Arimura H (2005) LCM ver.3: collaboration of array, bitmap and prefix tree for frequent itemset mining. Paper presented at the Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, Chicago, Illinois, USA, 21–24, Aug 2005

    Google Scholar 

  • Zaki M (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn 42(1–2):31–60. doi:10.1023/A:1007652502315

  • Zaki MJ, Carothers CD, Szymanski BK (2010) Vogue: a variable order hidden markov model with duration based on frequent sequence mining. ACM Trans Knowl Discov Data 4(1):1–31. doi:10.1145/1644873.1644878

Download references

Acknowledgments

This work was supported by the Malaysia Fellowship (Ministry of Education Malaysia) and Universiti Teknologi Malaysia (UTM). The authors would also like to acknowledge The Royal Netherlands Meteorological Institute (KNMI) for providing the wind data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhakim Yusof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yusof, N., Zurita-Milla, R., Kraak, MJ., Retsios, B. (2014). Mining Frequent Spatio-Temporal Patterns in Wind Speed and Direction. In: Huerta, J., Schade, S., Granell, C. (eds) Connecting a Digital Europe Through Location and Place. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-03611-3_9

Download citation

Publish with us

Policies and ethics