Abstract
Wind is a dynamic geographic phenomenon that is often characterized by its speed and by the direction from which it blows. The cycle’s effect of heating and cooling on the Earth’s surface causes the wind speed and direction to change throughout the day. Understanding the changeability of wind speed and direction simultaneously in long term time series of wind measurements is a challenging task. Discovering such pattern highlights the recurring of speed together with direction that can be extracted in specific chronological order of time. In this chapter, we present a novel way to explore wind speed and direction simultaneously using sequential pattern mining approach for detecting frequent patterns in spatio-temporal wind datasets. The Linear time Closed pattern Miner sequence (LCMseq) algorithm is constructed to search for significant sequential patterns of wind speed and direction simultaneously. Then, the extracted patterns were explored using visual representation called TileVis and 3D wind rose in order to reveal any valuable trends in the occurrences patterns. The applied methods demonstrated an improvement way of understanding of temporal characteristics of wind resources.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal R, Srikant R (1995) Mining sequential patterns In: 11th International Conference on Data Engineering, IEEE Computer Society, Los Alamitos, Taipei, Taiwan, Mar 1995, pp 3–14
Andrienko N, Andrienko G (eds) (2006) Exploratory analysis of spatial and temporal data—a systematic approach. Springer, Berlin
Barszcz T, Bielecka M, Bielecki A, Wójcik M (2012) Wind speed modelling using weierstrass function fitted by a genetic algorithm. J Wind Eng Ind Aerod 109:68–78. doi:10.1016/j.jweia.2012.06.007
Bertin J (1967) Semiologie graphique. Les diagrammes, les reseaux, les cartes. Haye-Paris, Mouton et Gouthier-Villar, 2 ed. 1973
Buddhakulsomsiri J, Zakarian A (2009) Sequential pattern mining algorithm for automotive warranty data. Comput Ind Eng 57(1):137–147. doi:10.1016/j.cie.2008.11.006
Cabello M, Orza JAG (2010) Wind speed analysis in the province of alicante, Spain. Potential for small-scale wind turbines. Renew Sustain Energ Rev 14(9):3185–3191. doi:10.1016/j.rser.2010.07.002
Chang JH (2011) Mining weighted sequential patterns in a sequence database with a time-interval weight. Know Based Syst 24(1):1–9. doi:10.1016/j.knosys.2010.03.003
Chen E, Cao H, Li Q, Qian T (2008) Efficient strategies for tough aggregate constraint-based sequential pattern mining. Inf Sci 178(6):1498–1518. doi:10.1016/j.ins.2007.10.014
Colak I, Sagiroglu S, Yesilbudak M (2012) Data mining and wind power prediction: a literature review. Renew Energ 46:241–247. doi:10.1016/j.renene.2012.02.015
de Prada Gil M, Gomis-Bellmunt O, Sumper A, Bergas-Jané J (2012) Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequencies considering wake effects. Energy 37(1):455–468. doi:10.1016/j.energy.2011.11.010
Erdem E, Shi J (2011) ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energ 88(4):1405–1414. doi:10.1016/j.apenergy.2010.10.031
Floratou A, Tata S, Patel JM (2010) Efficient and accurate discovery of patterns in sequence datasets. In: Data Engineering (ICDE), 2010 IEEE 26th International Conference on, 1–6 Mar 2010, pp 461–472. doi:10.1109/ICDE.2010.5447843
Grosser H, Britos P, García-Martínez R (2005) Detecting fraud in mobile telephony using neural networks. In: Ali M, Esposito F (eds) Innovations in Applied Artificial Intelligence. Lecture Notes in Computer Science, vol 3533. Springer, Berlin, pp 613–615. doi:10.1007/11504894_85
Han J, Kamber M (2001) Data mining: concepts and techniques. In: The Morgan Kaufmann Series in Data Management Systems JG, Series Editor (ed). Morgan Kaufmann Publishers, San Diego: Academic Press, p 550
Herrera JL, Piedracoba S, Varela RA, Rosón G (2005) Spatial analysis of the wind field on the western coast of galicia (NW Spain) from in situ measurements. Cont Shelf Res 25(14):1728–1748. doi:10.1016/j.csr.2005.06.001
Ho Q, Lundblad P, Åström T, Jern M (2011) A Web-enabled visualization toolkit for geovisual analytics. In: Proceedings of SPIE, the International Society for Optical Engineering: SPIE: Electronic Imaging Science and Technology, Visualization and Data Analysis 7868: doi:10.1117/12.872250
Huang H, Ooka R, Liu N, Zhang L, Deng Z, Kato S (2009) Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions. Fire Saf J 44(3):311–321. doi:10.1016/j.firesaf.2008.07.005
Jian P, Jiawei H, Mortazavi-Asl B, Jianyong W, Pinto H, Qiming C, Dayal U, Mei-Chun H (2004) Mining sequential patterns by pattern-growth: the PrefixSpan approach. Know Data Eng IEEE Trans 16(11):1424–1440. doi:10.1109/TKDE.2004.77
Jung J, Tam K-S (2013) A frequency domain approach to characterize and analyze wind speed patterns. Appl Energ 103:435–443. doi:10.1016/j.apenergy.2012.10.006
Keim DA (2002) Information visualization and visual data mining. Vis Comput Graph IEEE Trans 8(1):1–8. doi:10.1109/2945.981847
Keim DA, Hao MC, Dayal U, Hsu M (2002) Pixel bar charts: a visualization technique for very large multi-attribute data sets\(\dagger \). Inf Vis 1(1):20–34. doi: 10.1057/palgrave.ivs.9500003
Kuo RJ, Chao CM, Liu CY (2009) Integration of K-means algorithm and AprioriSome algorithm for fuzzy sequential pattern mining. Appl Soft Comput 9(1):85–93. doi:10.1016/j.asoc.2008.03.010
Li C, Yang Q, Wang J, Li M (2012) Efficient mining of gap-constrained subsequences and its various applications. ACM Trans Knowl Discov Data 6(1):1–39. doi:10.1145/2133360.2133362
MacEachren AM (ed) (2004) How maps work: representation, visualization, and design. Guilford Press, New York
Mukulo BM, Ngaruiya JM, Kamau JN (2014) Determination of wind energy potential in the mwingi-kitui plateau of kenya. Renew Energ 63:18–22. doi:10.1016/j.renene.2013.08.042
Nakahara T, Uno T, Yada K (2010) Extracting promising sequential patterns from RFID data using the LCM sequence. In: Setchi R, Jordanov I, Howlett R, Jain L (eds). Knowledge-Based and Intelligent Information and Engineering Systems. Lecture Notes In Computer Science, vol 6278. Springer, Berlin, pp 244–253. doi:10.1007/978-3-642-15393-8_28
Raïssi C, Pei J (2011) Towards bounding sequential patterns. Paper presented at the Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, San Diego, California, USA, 21–24, Aug 2001
Şahin AD (2004) Progress and recent trends in wind energy. Prog Energ Combust Sci 30(5):501–543. doi:10.1016/j.pecs.2004.04.001
Sallaberry A, Pecheur N, Bringay S, Roche M, Teisseire M (2011) Sequential patterns mining and gene sequence visualization to discover novelty from microarray data. J Biomed Inf 44(5):760–774. doi:10.1016/j.jbi.2011.04.002
Samuel G, Alexander L, Nils G, Hanspeter P, Marc S (2013) LineUp: visual analysis of multi-attribute Rankings. IEEE Trans Visual Comput Graph (InfoVis ’13) 19(12)
Schumann H, Tominski C (2011) Analytical, visual and interactive concepts for geo-visual analytics. J Vis Lang Comput 22(4):257–267. doi:10.1016/j.jvlc.2011.03.002
Soler-Bientz R, Watson S, Infield D (2009) Preliminary study of long-term wind characteristics of the mexican yucatán peninsula. Energ Convers Manage 50(7):1773–1780. doi:10.1016/j.enconman.2009.03.018
Uno T, Kiyomi M, Arimura H (2005) LCM ver.3: collaboration of array, bitmap and prefix tree for frequent itemset mining. Paper presented at the Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, Chicago, Illinois, USA, 21–24, Aug 2005
Zaki M (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn 42(1–2):31–60. doi:10.1023/A:1007652502315
Zaki MJ, Carothers CD, Szymanski BK (2010) Vogue: a variable order hidden markov model with duration based on frequent sequence mining. ACM Trans Knowl Discov Data 4(1):1–31. doi:10.1145/1644873.1644878
Acknowledgments
This work was supported by the Malaysia Fellowship (Ministry of Education Malaysia) and Universiti Teknologi Malaysia (UTM). The authors would also like to acknowledge The Royal Netherlands Meteorological Institute (KNMI) for providing the wind data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Yusof, N., Zurita-Milla, R., Kraak, MJ., Retsios, B. (2014). Mining Frequent Spatio-Temporal Patterns in Wind Speed and Direction. In: Huerta, J., Schade, S., Granell, C. (eds) Connecting a Digital Europe Through Location and Place. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-03611-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-03611-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03610-6
Online ISBN: 978-3-319-03611-3
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)