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Abstract. Provenance information can greatly enhance transparency
and accountability of shared services. In this paper, we introduce a trust
estimation approach which can derive trust information based on the
analysis of provenance data. This approach can utilize the value of prove-
nance data, and enhance trust estimation in open dynamic environments.
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1 Introduction

Nowadays, with the development of open distributed systems, increasing number
of services and information are shared on open platforms. For many open dis-
tributed systems, trust is a crucial factor that reflects the quality of service (QoS)
and helps manage correlation among interactive service components. Provenance
data, which describes the origins and processes that relate to the generation of
composite services, can provide rich context for trust estimation [1]. Especially
in service-oriented computing, provenance identifies what data is passed between
services, what process involved in the generation of results, who contributed to
the service generation, etc. [4].

In this paper, a provenance-based trust estimation model is proposed. In
this model, provenance information of a composite service is represented as a
provenance graph. The similarities of different provenance graphs are analysed
according to their Same Edge Contributions (SEC). Based on graph similarities
and correlation to trust values, the performance of a future composite service
can be predicted.

The rest of this paper is organized as follows. Section 2 describes the prob-
lems definition and some assumptions in this research. Section 3 presents the
framework of the provenance-based trust evaluation model, and how to derive
trust support values from provenance graph. In Section 4, we setup experiments
and demonstrate the performance of the SEC model. Finally, the conclusion and
future works are presented in Section 5.



2 Problem Definition

When a service consumer submits a service request, workflows which can satisfy
the request will be proposed by different providers. The system will estimate each
proposed workflow based on the analysis of historical provenance data (graphs).
We suppose that there is a universe of n service components S = {S1, S2, ..., Sn}
which are loosely coupled in a SOC system. Ex(Si, Sj) represents a path leads
from Si to Sj . Firstly, we give the definition for provenance graph in knowledge
base.

Definition 1: A provenance graph is a 2-tuple PV G = (VPV G, EPV G), where
VPV G is a finite set of nodes, and EPV G is the finite set of edges. Furthermore,
| GPV G |=| VPV G | + | EPV G | denote the size of GPV G

The requests from service consumers include basic functional requirements,
and then system will receive proposal graph from different providers as following
definition.

Definition 2: A proposal graph PRG is defined as 2-tuple, i.e., PRG =< ID,
PRG = (VPRG, EPRG) >. ID is the unique identifier for each service request.
PRG is the proposal graph from providers that describes a finite set of ser-
vice components VPRG = {S1, S2, S3, ..., Sn} and a finite set of edges EPRG =
{E1(S1, S2), E2(S1, S3), ..., En(Sn−1, Sn)}.

The service components in VPRG are required to achieve the functional re-
quirement of the request, and EPRG indicate the process of composite service.
After the completion of the composite service, the system will generate service
feedback RF which contains the proposal graph PRG and quality of composite
service.

Definition 3: A service feedback RF is defined as a 2-tuple, RF =< R,Q >.
R is the service request generated by the system which contains both unique
transaction ID and provenance graph PRG. PRG describes the required ser-
vice components and process in detail. Q represents the quality of composite
service.

Definition 4: A sub-service graph g = (Vg, Eg) is a subgraph of a graph
PRG or PV G, denoted by g ⊆ PRG/PV G, where Vg ⊆ VPRG/VPV G and
Eg ⊆ EPRG/EPV G.

3 The Provenance-Based Trust Estimation Approach

3.1 Trust Estimation Protocol

In our approach, trust prediction is conducted by the protocol shown in Fig.1.
Firstly, after the system receives a request, proposal graphs PRG based on the



Fig. 1. Trust Estimation Protocol

functional requirements from the service consumer will be generated. Then the
proposal graphs will be sent to the Prediction Retrieval Module. The Predic-
tion Retrieval Module will search Knowledge Base for all possible provenance
graphs PV G which are similar to proposal graph PRG. Then, based on the
previous provenance graphs PV G in the Knowledge Base, the Edge Contribu-
tion Module will update the edge contribution value for total available edges. At
the beginning all edge are given the same weight within in the request. General
Similarity Calculation Module calculates the similarity between proposal graphs
PRG and provenance graph PV G based on the same service components and
edges in graphs and then passed the most similar provenance graphs PV G to
Prediction Calculation Module. Comparing the same edges in proposal graph
PRG and provenance graphs PV G, the Prediction Calculation Module will use
edge contribution value to give each provenance graph PV G support value. The
system will return the class value of the provenance graph PV G which obtained
the highest support value to the Reply Module.

3.2 General Similarity Calculation

The general similarity between proposal graph PRG and candidate provenance
graph PV G in knowledge base is decided by an upper bound on the size of the
Maximum Common Edge Subgraph (MCES) [5] [2]. First, according to service
service components S in each graph, the set of vertices is partitioned into l par-
titions. Let gPRG

i and gPV G
i denote the sub-graph in ith partition in graph PRG

and PV G, respectively. An upper-bound on the similarity between provenance
graph PRG and PV G can be calculated as follows:

V (PRG,PV G) =

l∑
i=1

min{|gPRG
i |, |gPV G

i |} (1)



E(PRG,PV G) = b
l∑

i=1

max{|gPRG
i |,|gPV G

i |}∑
j=1

min{d(SPRG
j ), d(SPV G

j )}
2

c (2)

sim(PRG,PV G) =
[V (PRG,PV G) + E(PRG,PV G)]2

[|V (PRG)|+ |E(PRG)|]× [|V (PV G)|+ |E(PV G)|]
(3)

where d(S
PRG/PV G
j ) denotes the number of adjacent service components of Sj

in provenance graph PRG/PVG. Fig.2(a) and Fig.2(b) illustrate two workflow
graphs for composite services. The higher sim(PRG,PV G), the more same edge
and nodes are share between the proposal graph PRG and candidate provenance
graph PV G in knowledge base. It is necessary to specify a minimum acceptable
value simthreshold for the general similarity measure. If sim(PV G,PRG) ≤
simthreshold, the candidate provenance graph PV G will be ignored in following
edit operation cost calculation procedure.

(a) Proposal Graph PRG (b) Provenance Graph PV G

Fig. 2.

3.3 Edge Contribution Calculation

In our approach, we intend to adopt the Edge Contribution which each edge
E(Si, Sj) makes to quantify the edit operation cost. The Quality of Service
(QoS) of a composite service is assumed as a random behavior. The uncertainty
of such a random behavior is related with the required edges Ex

G(Si, Sj) in the
process of service request, and can be reduced with the existence of a particular
edge. Therefore, we firstly calculate the Quality Entropy (H(Q)) to measure
average uncertainty of the QoS value of composite services [3]. Then, mutual
information (i.e., I(Q;Ex

G)) [6] is used to measure how much reduction can a
particular edge Ex

G make to the uncertainty of the QoS value.

CEx
G(Si,Sj) =

I(Q;Ex
G(Si, Sj))

H(Q)
(4)



WCEx
G

=
CEx

G∑
Ex∈EG

CEx
G

(5)

where G represents as PRG or PV G in different situations and where WCEx
G

is
the contribution of edge Ex

G for PRG or PV G. The larger WCEx
G

is, the most
contribution the edge Ex

G makes in the process.
Comparing proposal graph PRG and candidate provenance graph PV G

passed from General Similarity Calculation step, we can get the particular same
edge set between PRG and each PV G, i.e., {Ei

sameSet} = Same(EPRG, EPV G) =
{Ei, Ej , Ek, ...}, where all edges {Ei, Ej , Ek, ...} in {Ei

sameSet} both occur in
PRG and PV G. For example, according to Fig. 2(a) and 2(b), {EsameSet} =
{E(S1, S3), E(S2, S3)}. Then, we should separately calculate the Same Edge
Contribution rate (SEC) on proposal graph PRG and provenance graph PV G
as follow:

SECPRG/PV G =

∑
Ex∈Ei

sameSet

WCEx
PRG/PV G∑

Ex∈EPRG/PV G

WCEx
PRG/PV G

(6)

The edge contribution (WCEx
G

) in different graphs is different. In order to com-
pare the contribution of same edge set which both occur in PRG and PV G, we
should calculate as follow:

Support = SECPRG ∗ SECPV G (7)

The Support value will range from 0 to 1. In order to get a high Support value for
particular provenance graph PV G, Same Edge Contribution rate for proposal
graph (SECPV G) and provenance graph (SECPV G) should not only as high as
possible, but also as close as possible. The class which the proposal graph PRG
should be classified into is dependent on the support value of each provenance
graph PV G. Finally, the Reply Module generate a feed back RF for the proposal
PRG after the execution, and store the information into the Knowledge Base.

4 Experiments and Analysis

Some experiments are conducted in this research. In the experiments, we in-
cluded 10 service components Si, and 45 kinds of edges E(Si, Sj). There are 2
kinds of class (i.e., Successful and Unsuccessful) are adopted for representing
QoS. We except for two classification metrics: Accuracy and Precision for Suc-
cessful class. We design three different scenarios for the experiment. Firstly, all
training dataset and test dataset share the same set of service components and
edges. Secondly, there appear new service components and edges in test, but
they cannot been found in knowledge base. Thirdly, provenance graphs PV G
with new service components and edges are added into the knowledge base.



Finally, following characteristics of the SEC model can be demonstrated.
Firstly, even if there appear new service components and edges in Request prove-
nance graph without in original knowledge base, the SEC model still can work
and perform better in Precision for predicting Successful composite service. Sec-
ondly, according to the result from experiment, the Precision for the SEC model
in three experiments seems to be similar, because they shared the same high con-
tribution edge set. Thirdly, once an new edge is included into knowledge base, if
it highly contribute to the class value, its WCx

EG
will immediately reflect it and

influence the prediction ability of the SEC model.

5 Conclusion and Future Work

In this paper, we investigated the possibility of using provenance graphs in trust
estimation, and proposed a trust estimation model, named the SEC model, for
predicting the trustworthiness of a composite service based on related provenance
information. The proposed approach can work effectively to facilitate users to
analyze huge amount of provenance data, and derive trust information from them
automatically for service composition in open systems. The future work of this
research will mainly focus on two aspects. Firstly, we are going to investigate
more advance methods to improve the accuracy of trust estimation. Secondly, we
will investigate more effectively approach for estimating multi-class trust values.
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