Abstract
This paper proposes a way of using data collected from tracking gps installed in rental tourist cars. Data has been collected during more than one year. The gps positions are lined to the gps positions of the tourist sites (restaurants, beaches, museums ...). [9] These links are presented as a summary of the data. This summary is used to run specific versions of machine learning algorithms because of their geo-graphical dimension. This experiment shows how gps summaries of data can be used to extract relationships between stops of a car and touristic places.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.L.P. (eds.) Proceedings of the Eleventh International Conference on Data Engineering, March 6-10 (1995)
Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed representations (extended abstract) (1996)
Lallich, S., Teytaud, O.: Evaluation et validation de l’interet des regles d’association (2000)
Nicolas., P., Lotfi, L.: Data mining: Algorithmes d’extraction et de rduction des regles d’association dans les bases de donnes (2000)
Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Machine Learning 42(1/2), 31–60 (2001)
Masseglia, F., Teisseire, M., Poncelet, P.: Extraction de motifs sequentiels. Problemes et methodes (2004)
Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on Knowledge and Data Engineering (2004)
Grozavu, N., Bennani, Y.: Classification collaborative non supervisee LPN UMP CNRS, 249-264 CAP (2010)
Béchet, N., Aufaure, M.-A., Lechevallier, Y.: Construction et de structures hirarchiques de concepts dans le domaine du e-tourisme: INRIA - 475-506, IFIA (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Elisabeth, E., Nock, R., Célimène, F. (2013). Demonstrator of a Tourist Recommendation System. In: Bhatnagar, V., Srinivasa, S. (eds) Big Data Analytics. BDA 2013. Lecture Notes in Computer Science, vol 8302. Springer, Cham. https://doi.org/10.1007/978-3-319-03689-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-03689-2_11
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03688-5
Online ISBN: 978-3-319-03689-2
eBook Packages: Computer ScienceComputer Science (R0)