Abstract
In this paper, we present a query-dependent thumbnailing approach for web image search. Motivated by the fact that uniform down-sampling cannot emphasize query objects while saliency-based methods may present incorrect foreground objects, we propose to employ common object discovery (COD) algorithms to mine the underlying canonical query objects from the result image collection and adopt the detected object regions of interest (ROIs) as a guide for image cropping. To make the employed COD approach more adaptive to our scenario, we enhance it by introducing text-based search rankings. We then decide for each image whether it should be cropped and determine the final cropping boundary by expanding the detected bounding box, so that the produced thumbnails are of proper appearances. The experimental results demonstrate that our method can outperform down-sampling and saliency-based methods on both object localization accuracy and general thumbnail quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Suh, B., Ling, H., Bederson, B., Jacobs, D.: Automatic thumbnail cropping and its effectiveness. In: ACM Symposium on User Interface Software and Technology, pp. 95–104. ACM (2003)
Feng, J., Wei, Y., Tao, L., Zhang, C., Sun, J.: Salient object detection by composition. In: ICCV, pp. 1028–1035. IEEE (2011)
Kim, G., Torralba, A.: Unsupervised detection of regions of interest using iterative link analysis. In: NIPS (2009)
Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. In: TOG, vol. 26, p. 10. ACM (2007)
Ren, T., Liu, Y., Wu, G.: Rapid image retargeting based on curve-edge grid representation. In: ICIP, pp. 869–872 (2010)
Ren, T., Liu, Y., Wu, G.: Image retargeting based on global energy optimization. In: ICME, pp. 406–409. IEEE (2009)
Ren, T., Liu, Y., Wu, G.: Image retargeting using multi-map constrained region warping. In: ACM Multimedia, pp. 853–856. ACM (2009)
Liu, F., Gleicher, M.: Automatic image retargeting with fisheye-view warping. In: Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology, pp. 153–162. ACM (2005)
Amrutha, I., Shylaja, S., Natarajan, S., Murthy, K.: A smart automatic thumbnail cropping based on attention driven regions of interest extraction. In: ICIS, pp. 957–962. ACM (2009)
Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR, pp. 73–80. IEEE (2010)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. PAMI 34(10), 1915–1926 (2012)
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604. IEEE (2009)
Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)
Kim, G., Xing, E., Fei-Fei, L., Kanade, T.: Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: ICCV, pp. 169–176 (2011)
Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: CVPR, pp. 1943–1950. IEEE (2010)
Deselaers, T., Alexe, B., Ferrari, V.: Localizing objects while learning their appearance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 452–466. Springer, Heidelberg (2010)
Zhu, J.Y., Wu, J., Wei, Y., Chang, E., Tu, Z.: Unsupervised object class discovery via saliency-guided multiple class learning. In: CVPR, pp. 3218–3225. IEEE (2012)
Frey, B., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893. IEEE (2005)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems 30(1-7), 107–117 (1998)
Bing, http://www.bing.com
Krapac, J., Allan, M., Verbeek, J., Juried, F.: Improving web image search results using query-relative classifiers. In: CVPR, pp. 1094–1101 (2010)
Bosch, A., Zisserman, A., Muoz, X.: Image classification using random forests and ferns. In: CVPR, pp. 1–8 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, Y., Yang, L., Wu, G. (2013). Smart Thumbnail: Automatic Image Cropping by Mining Canonical Query Objects. In: Huet, B., Ngo, CW., Tang, J., Zhou, ZH., Hauptmann, A.G., Yan, S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham. https://doi.org/10.1007/978-3-319-03731-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-03731-8_32
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03730-1
Online ISBN: 978-3-319-03731-8
eBook Packages: Computer ScienceComputer Science (R0)