Skip to main content

Graph-Guided Fusion Penalty Based Sparse Coding for Image Classification

  • Conference paper
Advances in Multimedia Information Processing – PCM 2013 (PCM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8294))

Included in the following conference series:

Abstract

In image classification, conventional sparse coding only encodes local features independently. As a result, the similar local features may be encoded into code vectors with large discrepancy. This sensitiveness has became the bottleneck of the traditional sparse coding based image classification methods. In this paper, we propose a novel graph-guided fusion penalty based sparse coding method. To alleviate the sensitiveness of the traditional sparse coding, our approach constrains that the similar local features are encoded into similar code vectors. To achieve this goal, we add the popular graph-guided fusion penalty term into the traditional l1-regularized sparse coding formulation. Finally, we adopt the multi-task form of the smoothing proximal gradient method to solve our optimization problem efficiently. Experimental results on 3 benchmark datasets demonstrate the effectiveness of our improved sparse coding method in image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Bao, B.-K., Zhu, G., Shen, J., Yan, S.: Robust image analysis with sparse representation on quantized visual features. IEEE Transactions on Image Processing 22(3), 860–871 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Chen, X., Lin, Q., Kim, S., Carbonell, J.G., Xing, E.P.: Smoothing proximal gradient method for general structured sparse learning. In: UAI, pp. 105–114 (2011)

    Google Scholar 

  5. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

    Google Scholar 

  6. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

  7. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: Workshop on Generative-Model Based Vision, CVPR (2004)

    Google Scholar 

  8. Gao, S., Tsang, I.W.-H., Chia, L.-T., Zhao, P.: Local features are not lonely - laplacian sparse coding for image classification. In: CVPR, pp. 3555–3561 (2010)

    Google Scholar 

  9. Huang, Y., Huang, K., Yu, Y., Tan, T.: Salient coding for image classification. In: CVPR, pp. 1753–1760 (2011)

    Google Scholar 

  10. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: ICCV, pp. 604–610 (2005)

    Google Scholar 

  11. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)

    Google Scholar 

  12. Li, L.-J., Li, F.-F.: What, where and who? classifying events by scene and object recognition. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  13. Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: ICCV, pp. 2486–2493 (2011)

    Google Scholar 

  14. Liu, S., Feng, J., Song, Z., Zhang, T., Lu, H., Xu, C., Yan, S.: Hi, magic closet, tell me what to wear? In: ACM Multimedia (2012)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Lu, Z., Ip, H.H.-S.: Image categorization with spatial mismatch kernels. In: CVPR, pp. 397–404 (2009)

    Google Scholar 

  17. van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel codebooks for scene categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T.S., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR, pp. 3360–3367 (2010)

    Google Scholar 

  19. Yang, J., Yu, K., Gong, Y., Huang, T.S.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR, pp. 1794–1801 (2009)

    Google Scholar 

  20. Yao, B., Khosla, A., Li, F.-F.: Combining randomization and discrimination for fine-grained image categorization. In: CVPR, pp. 1577–1584 (2011)

    Google Scholar 

  21. Zhang, T., Liu, J., Liu, S., Ouyang, Y., Lu, H.: Boosted exemplar learning for human action recognition. In: ICCV Workshop on Video-oriented Object and Event Classification (2009)

    Google Scholar 

  22. Zhang, T., Liu, J., Liu, S., Xu, C., Lu, H.: Boosted exemplar learning for action recognition and annotation. IEEE Transactions on CSVT 21(7), 853–866 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, X., Zhang, T., Xu, C., Xu, M. (2013). Graph-Guided Fusion Penalty Based Sparse Coding for Image Classification. In: Huet, B., Ngo, CW., Tang, J., Zhou, ZH., Hauptmann, A.G., Yan, S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham. https://doi.org/10.1007/978-3-319-03731-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03731-8_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03730-1

  • Online ISBN: 978-3-319-03731-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics