Abstract
In image classification, conventional sparse coding only encodes local features independently. As a result, the similar local features may be encoded into code vectors with large discrepancy. This sensitiveness has became the bottleneck of the traditional sparse coding based image classification methods. In this paper, we propose a novel graph-guided fusion penalty based sparse coding method. To alleviate the sensitiveness of the traditional sparse coding, our approach constrains that the similar local features are encoded into similar code vectors. To achieve this goal, we add the popular graph-guided fusion penalty term into the traditional l1-regularized sparse coding formulation. Finally, we adopt the multi-task form of the smoothing proximal gradient method to solve our optimization problem efficiently. Experimental results on 3 benchmark datasets demonstrate the effectiveness of our improved sparse coding method in image classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Bao, B.-K., Zhu, G., Shen, J., Yan, S.: Robust image analysis with sparse representation on quantized visual features. IEEE Transactions on Image Processing 22(3), 860–871 (2013)
Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Chen, X., Lin, Q., Kim, S., Carbonell, J.G., Xing, E.P.: Smoothing proximal gradient method for general structured sparse learning. In: UAI, pp. 105–114 (2011)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: Workshop on Generative-Model Based Vision, CVPR (2004)
Gao, S., Tsang, I.W.-H., Chia, L.-T., Zhao, P.: Local features are not lonely - laplacian sparse coding for image classification. In: CVPR, pp. 3555–3561 (2010)
Huang, Y., Huang, K., Yu, Y., Tan, T.: Salient coding for image classification. In: CVPR, pp. 1753–1760 (2011)
Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: ICCV, pp. 604–610 (2005)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)
Li, L.-J., Li, F.-F.: What, where and who? classifying events by scene and object recognition. In: ICCV, pp. 1–8 (2007)
Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: ICCV, pp. 2486–2493 (2011)
Liu, S., Feng, J., Song, Z., Zhang, T., Lu, H., Xu, C., Yan, S.: Hi, magic closet, tell me what to wear? In: ACM Multimedia (2012)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Lu, Z., Ip, H.H.-S.: Image categorization with spatial mismatch kernels. In: CVPR, pp. 397–404 (2009)
van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel codebooks for scene categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)
Wang, J., Yang, J., Yu, K., Lv, F., Huang, T.S., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR, pp. 3360–3367 (2010)
Yang, J., Yu, K., Gong, Y., Huang, T.S.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR, pp. 1794–1801 (2009)
Yao, B., Khosla, A., Li, F.-F.: Combining randomization and discrimination for fine-grained image categorization. In: CVPR, pp. 1577–1584 (2011)
Zhang, T., Liu, J., Liu, S., Ouyang, Y., Lu, H.: Boosted exemplar learning for human action recognition. In: ICCV Workshop on Video-oriented Object and Event Classification (2009)
Zhang, T., Liu, J., Liu, S., Xu, C., Lu, H.: Boosted exemplar learning for action recognition and annotation. IEEE Transactions on CSVT 21(7), 853–866 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, X., Zhang, T., Xu, C., Xu, M. (2013). Graph-Guided Fusion Penalty Based Sparse Coding for Image Classification. In: Huet, B., Ngo, CW., Tang, J., Zhou, ZH., Hauptmann, A.G., Yan, S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham. https://doi.org/10.1007/978-3-319-03731-8_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-03731-8_44
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03730-1
Online ISBN: 978-3-319-03731-8
eBook Packages: Computer ScienceComputer Science (R0)