Skip to main content

Intelligent Fault Tracking by an Adaptive Fuzzy Predictor and a Fractional Controller of Electromechanical System – A Hybrid Approach

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8298))

Included in the following conference series:

  • 2598 Accesses

Abstract

In this paper we proposed a Fuzzy Fractional order Proportional-integral-derivative (FOPID) controller for electromechanical actuated worm gear operated fuel shut off valve. An adaptive fuzzy fractional control system (FFCS) is used to reduce the fault of a critical mechanical element in the aircraft component. In Aircraft operator and the maintenance people starving to reduce the cost of aircraft maintenance. So the condition based monitoring and control for electromechanical system is very popular recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical System Signal Processing 20, 1483–1510 (2006)

    Article  Google Scholar 

  2. Hardman, W.: Mechanical and propulsion systems prognostics (2004); US navy strategy and demonstration. JOM 56(3), 21–7

    Google Scholar 

  3. Hardman, W., Hess, A., Sheaffer, J.: SH-60 helicopter integrated diagnostic system (HIDS) program—diagnostic and prognostic development experience. In: Proceedings of the IEEE Aerospace Conference, Aspen, CO, USA, March 6-13, p. 473

    Google Scholar 

  4. Samanta, B.: Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical System Signal Process 18, 625–644 (2004)

    Article  Google Scholar 

  5. Samanta, B., Nataraj, C.: Prognostics of machine condition using soft computing. Robotics and Computer-Integrated Manufacturing 24(6) (2008); 17th International Conference on Flexible Automation and Intelligent Manufacturing, pp. 816–823 (December 2008)

    Google Scholar 

  6. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, IV, pp. 1942–1948. IEEE Service Center, Piscataway (1995)

    Google Scholar 

  7. Banerjee, T.P., Das, S.: A Support Vector Machine based Multi-Sensor Data Fusion for Motor Fault Detection. Information Sciences 217, 25, 96–107 (2012)

    Google Scholar 

  8. Tse, P., Atherton, D.: Prediction of machine deterioration using vibration based fault trends and recurrent neural networks. Journal of Vibration and Acoustics 121, 355–362 (1999)

    Article  Google Scholar 

  9. Gebraeel, N., Lawley, M., Liu, R., Parmeshwaran, V.: Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Transactions on Industrial Electronics 51(3), 694–700 (2004)

    Article  Google Scholar 

  10. Zhao, F., Chen, J., Guo, L., Lin, X.: Neuro-fuzzy based condition prediction of bearing health. Journal of Vibration and Control 15(7), 1079–1091 (2009)

    Article  MATH  Google Scholar 

  11. Nguang, S.K., Shi, P., Ding, S.: Fault detection for uncertain fuzzy systems: An LMI approach. IEEE Trans. Fuzzy Syst. 15(6), 1251–1262 (2007)

    Article  Google Scholar 

  12. Bai, L., Tian, Z., Shi, S.: Robust fault detection for a class of nonlinear time-delay systems. Journal of the Franklin Institute 344(6), 873–888 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. He, X., Wang, Z.D., Zhou, D.H.: Robust fault detection for networked systems with communication delay and data missing. Automatica 45, 2634–2639 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li, S., Tao, G.: Feedback based adaptive compensation of control system actuator uncertainties. Automatica 45, 393–404 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cheng, Y., Jiang, B., Fu, Y., Gao, Z.: Robust observer based reliable control for satellite attitude control systems with sensor faults. Int. J. of Innovative Computing Information and Control 7(7B), 4149–4160 (2011)

    Google Scholar 

  16. van Soest, W.R., Chu, Q.P., Mulder, J.A.: Combined feedback linearization and constrained model predictive control for entry flight. AIAA Journal of Guidance, Control, and Dynamics 29(2), 427–434 (2006)

    Article  Google Scholar 

  17. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences 8, 199–249 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  19. Podlubny, I.: Fractional-order systems and PIλDμ controllers. IEEE Trans. on Automatic Control 44(1), 208–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Biswas, A., Das, S., Abraham, A., Dasgupta, S.: Design of fractional order controllers with an improved differential evolution. Engineering Applications of Artificial Intelligence 22(2), 343–350 (2009)

    Google Scholar 

  21. Banerjee, T.P., Saha, S., Das, S., Abraham, A.: An Application of Fractional Intelligent Robust Controller for Electromechanical Valve. In: Proceedings of the World Congress on Information and Communication Technologies (WICT 2011), pp. 368–372 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Banerjee, T.P., Das, S. (2013). Intelligent Fault Tracking by an Adaptive Fuzzy Predictor and a Fractional Controller of Electromechanical System – A Hybrid Approach. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8298. Springer, Cham. https://doi.org/10.1007/978-3-319-03756-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03756-1_51

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03755-4

  • Online ISBN: 978-3-319-03756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics