Abstract
A feedback vertex set is a subset of vertices, such that the removal of this subset renders the remaining graph cycle-free. The weight of a feedback vertex set is the sum of weights of its vertices. Finding a minimum weighted feedback vertex set is tractable for convex bipartite graphs, but \(\mathcal{NP}\)-complete even for unweighted bipartite graphs. In a circular convex (convex, respectively) bipartite graph, there is a circular (linear, respectively) ordering defined on one class of vertices, such that for every vertex in another class, the neighborhood of this vertex is a circular arc (an interval, respectively). The minimum weighted feedback vertex set problem is shown tractable for circular convex bipartite graphs in this paper, by making a Cook reduction (i.e. polynomial time Turing reduction) for this problem from circular convex bipartite graphs to convex bipartite graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bao, F.S., Zhang, Y.: A review of tree convex sets test. Computational Intelligence 28(3), 358–372 (2012); Previous version: A survey of tree convex sets test. arXiv.0906.0205 (2009)
Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized Algorithms for the Loop Cutset Problem. J. Artif. Intell. Res. 12, 219–234 (2000)
Brandstad, A., Le, V.B., Spinrad, J.P.: Graph Classes - A Survey. Society for Industrial and Applied Mathematics, Philadelphia (1999)
Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set: New Measure and New Structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)
Dom, M.: Algorithmic aspects of the consecutive ones property. Bulletin of the EATCS 98, 27–59 (2009)
Damaschke, P., Muller, H., Kratsch, D.: Domination in Convex and Chordal Bipartite Graphs. Inform. Proc. Lett. 36, 231–236 (1990)
Fomin, F.V., Gaspers, S., Pyatkin, A., Razgon, I.: On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms. Algorithmica 52(2), 293–307 (2008)
Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Handbook of Combinatorial Optimization, (suppl. vol. A), pp. 209–258. Kluwer Academic Publishers (1999)
Fomin, F.V., Villanger, Y.: Finding Induced Subgraphs via Minimal Triangulations. In: Proc. of STACS, pp. 383–394 (2010)
Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Golumbic, M.C., Goss, C.F.: Perfect elimination and chordal bipartite graphs. J. Graph Theory. 2, 155–163 (1978)
Grover, F.: Maximum matching in a convex bipartite graph. Nav. Res. Logist. Q. 14, 313–316 (1967)
Guo, J.: Undirected feedback vertex set. Encyclopedia of Algorithms, 995–996 (2008)
Hung, R.-W.: Linear-time algorithm for the paired-domination problem in convex bipartite graphs. Theory Comput. Syst. 50, 721–738 (2012)
Jiang, W., Liu, T., Ren, T., Xu, K.: Two hardness results on feedback vertex sets. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 233–243. Springer, Heidelberg (2011)
Jiang, W., Liu, T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite graphs. Theor. Comput. Sci. (in press, 2013), doi: 10.1016/j.tcs.2012.12.021
Jiang, W., Liu, T., Xu, K.: Tractable feedback vertex sets in restricted bipartite graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 424–434. Springer, Heidelberg (2011)
Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
Kloks, T., Liu, C.H., Pon, S.H.: Feedback vertex set on chordal bipartite graphs. arXiv:1104.3915 (2011)
Kloks, T., Wang, Y.L.: Advances in graph algorithms. Manuscipt of a book (2013)
Liang, Y.D., Blum, N.: Circular convex bipartite graphs: maximum matching and Hamiltonian circuits. Inf. Process. Lett. 56, 215–219 (1995)
Liang, Y.D., Chang, M.S.: Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs. Acta Informatica 34, 337–346 (1997)
Lu, M., Liu, T., Xu, K.: Independent Domination: Reductions from Circular- and Triad-Convex Bipartite Graphs to Convex Bipartite Graphs. In: Fellows, M., Tan, X., Zhu, B. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 142–152. Springer, Heidelberg (2013)
Lu, Z., Liu, T., Xu, K.: Tractable Connected Domination for Restricted Bipartite Graphs (Extended Abstract). In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 721–728. Springer, Heidelberg (2013)
Madelaine, F.R., Stewart, I.A.: Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies. Discrete Math. 308, 4144–4164 (2008)
Song, Y., Liu, T., Xu, K.: Independent domination on tree convex bipartite graphs. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW 2012. LNCS, vol. 7285, pp. 129–138. Springer, Heidelberg (2012)
Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback vertex sets on tree convex bipartite graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer, Heidelberg (2012)
Wang, F.H., Wang, Y.L., Chang, J.M.: Feedback vertex sets in star graphs. Inform. Process. Lett. 89(4), 203–208 (2004)
Yannakakis, M.: Node-deletion problem on bipartite graphs. SIAM J. Comput. 10, 310–327 (1981)
Zhou, H.: The feedback vertex set problem: a spin glass approach. arXiv:1307.6948 (2013)
Van Zuylen, A.: Linear programming based approximation algorithms for feedback set problems in bipartite tournaments. Theor. Comput. Sci. (in press)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Lu, Z., Lu, M., Liu, T., Xu, K. (2013). Circular Convex Bipartite Graphs: Feedback Vertex Set. In: Widmayer, P., Xu, Y., Zhu, B. (eds) Combinatorial Optimization and Applications. COCOA 2013. Lecture Notes in Computer Science, vol 8287. Springer, Cham. https://doi.org/10.1007/978-3-319-03780-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-03780-6_24
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03779-0
Online ISBN: 978-3-319-03780-6
eBook Packages: Computer ScienceComputer Science (R0)