Skip to main content

Contracting Few Edges to Remove Forbidden Induced Subgraphs

  • Conference paper
Parameterized and Exact Computation (IPEC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8246))

Included in the following conference series:

Abstract

For a given graph property Π (i.e., a collection Π of graphs), the Π-Contraction problem is to determine whether the input graph G can be transformed into a graph satisfying property Π by contracting at most k edges, where k is a parameter. In this paper, we mainly focus on the parameterized complexity of Π-Contraction problems for Π being H-free (i.e., containing no induced subgraph isomorphic to H) for various fixed graphs H.

We show that Clique Contraction (equivalently, P 3 -Free Contraction for connected graphs) is FPT (fixed-parameter tractable) but admits no polynomial kernel unless NP ⊆ coNP/poly, and prove that Chordal Contraction (equivalently, { C l : l ≥ 4 }-Free Contraction) is W[2]-hard. We completely characterize the parameterized complexity of H -Free Contraction for all fixed 3-connected graphs H: FPT but no polynomial kernel unless NP ⊆ coNP/poly if H is a complete graph, and W[2]-hard otherwise. We also show that H -Free Contraction is W[2]-hard whenever H is a fixed cycle C l for some l ≥ 4 or a fixed path P l for some odd l ≥ 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asano, T., Hirata, T.: Edge-deletion and edge-contraction problems. In: Proceedings of STOC 1982, pp. 245–254 (1982)

    Google Scholar 

  2. Asano, T., Hirata, T.: Edge-contraction problems. Journal of Computer and System Sciences 26(2), 197–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical Computer Science 411(40-42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Eppstein, D.: Finding large clique minors is hard. Journal of Graph Algorithms and Applications 13(2), 197–204 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Increasing the minimum degree of a graph by contractions. Theoretical Computer Science 481, 74–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Golovach, P.A., van’t Hof, P., Paulusma, D.: Obtaining planarity by contracting few edges. Theoretical Computer Science 476, 38–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, C.: Parameterized Complexity of Graph Contraction Problems. PhD Thesis, The Chinese University of Hong Kong, Hong Kong S.A.R, China (2013), http://www.cse.cuhk.edu.hk/~cwguo/PhdThesis.pdf

  10. Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 55–66. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. In: Supratik, C., Amit, K. (eds.) FSTTCS 2011. LIPIcs, vol. 13, pp. 217–228. Leibniz-Zentrum für Informatik, Schloss Dagstuhl (2011)

    Google Scholar 

  12. Kaplan, H., Shamir, R., Tarjan, R.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on Computing 28(5), 1906–1922 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Watanabe, T., Ae, T., Nakamura, A.: On the removal of forbidden graphs by edge-deletion or by edge-contraction. Discrete Applied Mathematics 3(2), 151–153 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Cai, L., Guo, C. (2013). Contracting Few Edges to Remove Forbidden Induced Subgraphs. In: Gutin, G., Szeider, S. (eds) Parameterized and Exact Computation. IPEC 2013. Lecture Notes in Computer Science, vol 8246. Springer, Cham. https://doi.org/10.1007/978-3-319-03898-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03898-8_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03897-1

  • Online ISBN: 978-3-319-03898-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics