Skip to main content

Multi-parameter Complexity Analysis for Constrained Size Graph Problems: Using Greediness for Parameterization

  • Conference paper
Parameterized and Exact Computation (IPEC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8246))

Included in the following conference series:

  • 964 Accesses

Abstract

We study the parameterized complexity of a broad class of problems called “local graph partitioning problems” that includes the classical fixed cardinality problems as max k -vertex cover, k -densest subgraph, etc. By developing a technique that we call “greediness-for-parameterization”, we obtain fixed parameter algorithms with respect to a pair of parameters k, the size of the solution (but not its value) and \(\varDelta\), the maximum degree of the input graph. In particular, greediness-for-parameterization improves asymptotic running times for these problems upon random separation (that is a special case of color coding) and is more intuitive and simple. Then, we show how these results can be easily extended for getting standard-parameterization results (i.e., with parameter the value of the optimal solution) for a well known local graph partitioning problem.

Research supported by the French Agency for Research under the program TODO, ANR-09-EMER-010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cai, L.: Parameter complexity of cardinality constrained optimization problems. The Computer Journal 51, 102–121 (2008)

    Article  Google Scholar 

  2. Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cutting up is hard to do: the parameterized complexity of k-cut and related problems. Electronic Notes in Theoretical Computer Science, vol. 78, pp. 205–218. Elsevier (2003)

    Google Scholar 

  3. Fomin, F.V., Golovach, P.A., Korhonen, J.H.: On the parameterized complexity of cutting a few vertices from a graph. Technical report, CoRR, abs/1304.6189 (2013)

    Google Scholar 

  4. Marx, D.: Parameterized complexity and approximation algorithms. The Computer Journal 51, 60–78 (2008)

    Article  Google Scholar 

  5. Feige, U., Krauthgamer, R., Nissim, K.: On cutting a few vertices from a graph. Discrete Appl. Math. 127, 643–649 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 17–30. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41, 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lewis, H.R., Papadimitriou, C.H.: Elements of the theory of computation. Prentice-Hall (1981)

    Google Scholar 

  10. Maneth, S.: Logic and automata. Lecture 3: Expressiveness of MSO graph properties. Logic Summer School (2006)

    Google Scholar 

  11. Szeider, S.: Monadic second order logic on graphs with local cardinality constraints. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 601–612. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Bonnet, E., Escoffier, B., Paschos, V.T., Tourniaire, E.: Multi-parameter complexity analysis for constrained size graph problems: using greediness for parameterization. CoRR abs/1306.2217 (2013)

    Google Scholar 

  13. Cai, L., Chan, S.M., Chan, S.O.: Random separation: a new method for solving fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42, 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and approximation algorithms for densest k -subgraph. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 114–125. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Bonnet, É., Escoffier, B., Paschos, V.T., Tourniaire, É. (2013). Multi-parameter Complexity Analysis for Constrained Size Graph Problems: Using Greediness for Parameterization. In: Gutin, G., Szeider, S. (eds) Parameterized and Exact Computation. IPEC 2013. Lecture Notes in Computer Science, vol 8246. Springer, Cham. https://doi.org/10.1007/978-3-319-03898-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03898-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03897-1

  • Online ISBN: 978-3-319-03898-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics