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Abstract

We study the parameterized complexity of a broad class of problems
called “local graph partitioning problems” that includes the classical fixed
cardinality problems as max k-vertex cover, k-densest subgraph,
etc. By developing a technique “greediness-for-parameterization”, we ob-
tain fixed parameter algorithms with respect to a pair of parameters k,
the size of the solution (but not its value) and ∆, the maximum degree of
the input graph. In particular, greediness-for-parameterization improves
asymptotic running times for these problems upon random separation
(that is a special case of color coding) and is more intuitive and sim-
ple. Then, we show how these results can be easily extended for getting
standard-parameterization results (i.e., with parameter the value of the
optimal solution) for a well known local graph partitioning problem.

1 Introduction
A local graph partitioning problem is a problem defined on some graph G =
(V,E) with two integers k and p. Feasible solutions are subsets V ′ ⊆ V of
size exactly k. The value of their solutions is a linear combination of sizes of
edge-subsets and the objective is to determine whether there exists a solution
of value at least or at most p. Problems as max k-vertex cover, k-densest
subgraph, k-lightest subgraph, max (k, n−k)-cut and min (k, n−k)-cut,
also known as fixed cardinality problems, are local graph partitioning problems.
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When dealing with graph problems, several natural parameters, other than the
size p of the optimum, can be of interest, for instance, the maximum degree ∆ of
the input graph, its treewidth, etc. To these parameters, common for any graph
problem, in the case of local graph partitioning problem handled here, one more
natural parameter of very great interest can be additionally considered, the
size k of V ′. For instance, the most of these problems have mainly been studied
in [4, 8], from a parameterized point of view, with respect to parameter k, and
have been proved W[1]-hard. Dealing with standard parameterization, the only
problems that, to the best of our knowledge, have not been studied yet, are the
max (k, n− k)-cut and the min (k, n− k)-cut problems.

In this paper we develop a technique for obtaining multi-parameterized re-
sults for local graph partitioning problems. Informally, the basic idea behind it
is the following. Perform a branching with respect to a vertex chosen upon some
greedy criterion. For instance, this criterion could be to consider some vertex v
that maximizes the number of edges added to the solution under construction.
Without branching, such a greedy criterion is not optimal. However, if at each
step either the greedily chosen vertex v, or some of its neighbors (more precisely,
a vertex at bounded distance from v) are a good choice (they are in an optimal
solution), then a branching rule on neighbors of v leads to a branching tree
whose size is bounded by a function of k and ∆, and at least one leaf of which
is an optimal solution. This method, called “greediness-for-parameterization”,
is presented in Section 2 together with interesting corollaries about particular
local graph partitioning problems.

The results of Section 2 can sometimes be easily extended to standard pa-
rameterization results. In Section 3 we study standard parameterization of the
two still unstudied fixed cardinality problems max and min (k, n − k)-cut.
We prove that the former is fixed parameter tractable (FPT), while, unfortu-
nately, the status of the latter one remains still unclear. In order to handle
max (k, n − k)-cut we first show that when p 6 k or p 6 ∆, the problem is
polynomial. So, the only “non-trivial” case occurs when p > k and p > ∆, case
handled by greediness-for-parameterization. Unfortunately, this method con-
cludes inclusion of min (k, n − k)-cut in FPT only for some particular cases.
Note that in a very recent technical report by [11], Fomin et al., the follow-
ing problem is considered: given a graph G and two integers k, p, determine
whether there exists a set V ′ ⊂ V of size at most k such that at most p edges
have exactly one endpoint in V ′. They prove that this problem is FPT with
respect to p. Let us underline the fact that looking for a set of size at most k
seems to be radically different that looking for a set of size exactly k (as in min
(k, n− k)-cut). For instance, in the case k = n/2, the former becomes the min
cut problem that is polynomial, while the latter becomes the min bisection
problem that is NP-hard..

In Section 4.1, we mainly revisit the parameterization by k but we handle
it from an approximation point of view. Given a problem Π parameterized by
parameter ` and an instance I of Π, a parameterized approximation algorithm
with ratio g(.) for Π is an algorithm running in time f(`)|I|O(1) that either finds
an approximate solution of value at least/at most g(`)`, or reports that there is
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no solution of value at least/at most `. We prove that, although W[1]-hard for
the exact computation, max (k, n−k)-cut has a parameterized approximation
schema with respect to k and min (k, n − k)-cut a randomized parameter-
ized approximation schema. These results exhibit two problems which are hard
with respect to a given parameter but which become easier when we relax ex-
act computation requirements and seek only (good) approximations. To our
knowledge, the only other problem having similar behaviour is another fixed
cardinality problem, the max k-vertex cover problem, where one has to find
the subset of k vertices which cover the greatest number of edges [15]. Note that
the existence of problems having this behaviour but with respect to the standard
parameter is an open (presumably very difficult to answer) question in [15]. Let
us note that polynomial approximation of min (k, n− k)-cut has been studied
in [9] where it is proved that, if k = O(logn), then the problem admits a ran-
domized polynomial time approximation schema, while, if k = Ω(logn), then it
admits an approximation ratio (1+ εk

logn ), for any ε > 0. Approximation of max
(k, n − k)-cut has been studied in several papers and a ratio 1/2 is achieved
in [1] (slightly improved with a randomized algorithm in [10]), for all k.

Finally, in Section 4.2, we handle parameterization of local graph partition-
ing problems by the treewidth tw of the input graph and show, using a standard
dynamic programming technique, that they admit an O∗(2tw)-time FPT algo-
rithm, when the O∗(·) notation ignores polynomial factors. Let us note that the
interest of this result, except its structural aspect (many problems for the price
of a single algorithm), lies also in the fact that some local partitioning problems
(this is the case, for instance, of max and min (k, n− k)-cut) do not fit Cour-
celle’s Theorem [7]. Indeed, max and min bisection are not expressible in MSO
since the equality of the cardinality of two sets is not MSO-definable. In fact, if
one could express that two sets have the same cardinality in MSO, one would be
able to express in MSO the fact that a word has the same number of a’s and b’s,
on a two-letter alphabet, which would make that the set E = {w : |w|a = |w|b}
is MSO-definable. But we know that, on words, MSO-definability is equivalent
to recognizability; we also know by the standard pumping lemma (see, for in-
stance, [13]) that E is not recognizable [14], a contradiction. Henceforth, max
and min (k, n− k)-cut are not expressible in MSO; consequently, the fact that
those two problems, parameterized by tw are FPT cannot be obtained by Cour-
celle’s Theorem. Furthermore, even several known extended variants of MSO
which capture more problems [16], does not seem to be able to express the
equality of two sets either.

2 Greediness-for-parameterization
We first formally define the class of local graph paritioning problems.

Definition 1. A local graph partitioning problem is a problem having as input
a graph G = (V,E) and two integers k and p. Feasible solutions are subsets
V ′ ⊆ V of size exactly k. The value of a solution, denoted by val(V ′), is a
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linear combination α1m1 + α2m2 where m1 = |E(V ′)|, m2 = |E(V ′, V \ V ′)|
and α1, α2 ∈ R. The goal is to determine whether there exists a solution of
value at least p (for a maximization problem) or at most p (for a minimization
problem).

Note that α1 = 1, α2 = 0 corresponds to k-densest subgraph and k-
sparsest subgraph, while α1 = 0, α2 = 1 corresponds to (k, n− k)-cut, and
α1 = α2 = 1 gives k-coverage. As a local graph partitioning problem is en-
tirely defined by α1, α2 and goal ∈ {min,max} we will unambiguously denote
by L(goal , α1, α2) the corresponding problem. For conciseness and when no
confusion is possible, we will use local problem instead. In the sequel, k always
denotes the size of feasible subset of vertices and p the standard parameter, i.e.,
the solution-size. Moreover, as a partition into k and n − k vertices, respec-
tively, is completely defined by the subset V ′ of size k, we will consider it to be
the solution. A partial solution T is a subset of V ′ with less than k vertices.
Similarly to the value of a solution, we define the value of a partial solution,
and denote it by val (T ).

Informally, we devise incremental algorithms for local problems that add
vertices to an initially empty set T (for “taken” vertices) and stop when T
becomes of size k, i.e., when T itself becomes a feasible solution. A vertex
introduced in T is irrevocably introduced there and will be not removed later.

Definition 2. Given a local graph partitioning problem L(goal , α1, α2), the
contribution of a vertex v within a partial solution T (such that v ∈ T ) is
defined by δ(v, T ) = 1

2α1|E({v}, T )|+ α2|E({v}, V \ T )|
Note that the value of any (partial) solution T satifies val (T ) = Σv∈T δ(v, T ).

One can also remark that δ(v, T ) = δ(v, T ∩ N(v)), where N(v) denotes the
(open) neighbourhood of the vertex v. Function δ is called the contribution
function or simply the contribution of the corresponding local problem.

Definition 3. Given a local graph partitioning problem L(goal , α1, α2), a con-
tribution function is said to be degrading if for every v, T and T ′ such that
v ∈ T ⊆ T ′, δ(v, T ) 6 δ(v, T ′) for goal = min (resp., δ(v, T ) > δ(v, T ′) for
goal = max).

Note that it can be easily shown that for a maximization problem, a con-
tribution function is degrading if and only if α2 > α1/2 (α2 6 α1/2 for a
minimization problem). So in particular max k-vertex cover, k-sparsest
subgraph and max (k, n− k)-cut have a degrading contribution function.

Theorem 4. Every local partitioning problem having a degrading contribution
function can be solved in O∗(∆k).

Proof. With no loss of generality, we carry out the proof for a minimization
local problem L(min, α1, α2). We recall that T will be a partial solution and
eventually a feasible solution. Consider the following algorithm ALG1 which
branches upon the closed neighborhood N [v] of a vertex v minimizing the greedy
criterion δ(v, T ∪ {v}).
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Vn
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v

z

N [v] \ T

Figure 1: Situation of the input graph at a deviating node of the branching
tree. The vertex v can substitute z since, by the hypothesis, N [v] \ T and Vn

are disjoint and the contribution of a vertex can only decrease when we later
add some of its neighbors in the solution.

• if k > 0 then:

– pick the vertex v ∈ V \ T minimizing δ(v, T ∪ {v});
– for each vertex w ∈ N [v] \ T run ALG1(T ∪ {w},k − 1);

• else (k = 0), store the feasible solution T ;

• output the best among the solutions stored.

The branching tree of ALG1 has depth k, since we add one vertex at each
recursive call, and arity at most maxv∈V |N [v]| = ∆ + 1, where N [v] denotes
the closed neighbourhood of v. Thus, the algorithm runs in O∗(∆k).

For the optimality proof, we use a classical hybridation technique between
some optimal solution and the one solution computed by ALG1.

Consider an optimal solution V ′opt different from the solution V ′ computed
by ALG1. A node s of the branching tree has two characteristics: the partial
solution T (s) at this node (denoted simply T if no ambiguity occurs) and the
vertex chosen by the greedy criterion v(s) (or simply v). We say that a node s
of the branching tree is conform to the optimal solution V ′opt if T (s) ⊆ V ′opt.
A node s deviates from the optimal solution V ′opt if none of its sons is conform
to V ′opt.

We start from the root of the branching tree and, while possible, we move
to a conform son of the current node. At some point we reach a node s which
deviates from V ′opt. We set T = T (s) and v = v(s). Intuitively, T corresponds to
the shared choices between the optimal solution and ALG1 made along the branch
from the root to the node s of the branching tree. Setting Vn = V ′opt \ T , Vn

does not intersect N [v], otherwise s would not be deviating.
Choose any z ∈ V ′opt \ T and consider the solution induced by the set

Ve = V ′opt ∪ {v} \ {z}. We show that this solution is also optimal. Let
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Choose any z ∈ V ′opt \ T and consider the solution induced by the set
Ve = V ′opt ∪ {v} \ {z}. We show that this solution is also optimal. Let
Vc = V ′opt\{z}. We have val (Ve) = Σw∈Vc

δ(w, Ve)+δ(v, Ve). Besides, δ(v, Ve) =
δ(v, Ve ∩ N(v)) = δ(v, T ∪ {v}) since Ve \ (T ∪ {v}) = Vn and according to
the last remark of the previous paragraph, N(v) ∩ Vn = ∅. By the choice
of v, δ(v, T ∪ {v}) 6 δ(z, T ∪ {z}), and, since δ is a degrading contribu-
tion, δ(z, T ∪ {z}) 6 δ(z, V ′opt). Summing up, we get δ(v, Ve) 6 δ(z, V ′opt)
and val (Ve) 6 Σw∈Vc

δ(w, Ve) + δ(z, V ′opt). Since v is not in the neighborhood
of V ′opt \ T = Vn only z can degrade the contribution of those vertices, so
Σw∈Vc

δ(w, Ve) 6 Σw∈Vc
δ(w, V ′opt), and val (Ve) 6 Σw∈Vc

δ(w, V ′opt)+δ(z, V ′opt) =
val (V ′opt).

Thus, by repeating this argument at most k times, we can conclude that the
solution computed by ALG1 is as good as V ′opt.

Corollary 6. max k-vertex cover, k-sparsest subgraph and max (k, n−
k)-cut can be solved in O∗(∆k).

As mentioned before, the local problems mentioned in Corollary 6 have a
degrading contribution.

Theorem 7. Every local partitioning problem can be solved in O∗((∆k)2k).

Proof. Once again, with no loss of generality, we prove the theorem in the case of
minimization, i.e., L(min, α1, α2). The proof of Theorem 7 involves an algorithm
fairly similar to ALG1 but instead of branching on a vertex chosen greedily and its
neighborhood, we will branch on sets of vertices inducing connected components
(also chosen greedily) and the neighborhood of those sets.

Let us first state the following straightforward lemma that bounds the num-
ber of induced connected components and the running time to enumerate them.

Lemma 8. One can enumerate the connected induced subgraphs of size up to k
in time O∗(∆2k).

Proof of Lemma 8. One can easily enumerate with no redundancy all the con-
nected induced subgraph of size k which contains a vertex v. Indeed, one can
label the vertices of a graph G with integers from 1 to n, and at each step, take
the vertex in the built connected component with the smaller label and decide
once and for all which of its neighbors will be in the component too. That way,
you get each connected induced component in a unique manner.

Now, it boils down to counting the number of connected induced subgraph
of size k which contains a given vertex v. We denote that set of components
by Ck,v. Let us show that there is an injection from Ck,v to the set Bkdlog ∆e of
the binary trees with kdlog ∆e nodes.

Recall that the vertices of G are labeled from 1 to n. Given a component
C ∈ Ck,v, build the following binary tree. Start from the vertex v. From the
complete binary tree of height dlog ∆e, owning a little more than ∆ ordered
leaves, place in those leaves the vertices of N(v) according to the order 6, and
keep only the branches leading to vertices in C∩N(v). Iterate this process until
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Vn \H

S

T

H

Hc

Figure 2: Illustration of the proof, with filled vertices representing the optimal
solution V ′opt and dotted vertices representing the set S = S|H| computed by
ALG2 which can substitute H, since Vn does not interact with Hc nor with S.

not keep the corresponding branch. That way, you get for each vertex of C a
branch of size dlog ∆e, and hence there are kdlog ∆e nodes in the tree.

Recall that |Bkdlog ∆e| is given by the Catalan numbers, so |Bkdlog ∆e| =
(2kdlog ∆e)!

(kdlog ∆e)!(kdlog ∆e+1)! = O∗(4k log ∆) = O∗(∆2k). So, Σv∈V |Ck,v| = O∗(∆2k).
The proof of Lemma 8 is now completed.

Consider now the following algorithm.

Algorithm 9 (ALG2(T ,k)). set T = ∅;
ALG2(T ,k)

• if k > 0 then, for each i from 1 to k,

– find Si ∈ V \T minimizing val(T ∪Si) with Si inducing a connected
component of size i.

– for each i, for each v ∈ Si, run ALG2(T ∪ {v},k − 1);

• else (k = 0), stock the feasible solution T .

output the stocked feasible solution T minimizing val(T ).

The branching tree of ALG2 has size O(k2k). Computing the Si in each
node takes time O∗(∆2k) according to Lemma 8. Thus, the algorithm runs in
O∗((∆k)2k).

For the optimality of ALG2, we use the following lemma.
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you get all the vertices of C exactly once. When a vertex of C reappears, do
not keep the corresponding branch. That way, you get for each vertex of C a
branch of size dlog ∆e, and hence there are kdlog ∆e nodes in the tree.

Recall that |Bkdlog ∆e| is given by the Catalan numbers, so |Bkdlog ∆e| =
(2kdlog ∆e)!

(kdlog ∆e)!(kdlog ∆e+1)! = O∗(4k log ∆) = O∗(∆2k). So, Σv∈V |Ck,v| = O∗(∆2k).
The proof of Lemma 8 is now completed.

Consider now the following algorithm.

Algorithm 9 (ALG2(T ,k)). set T = ∅;
ALG2(T ,k)

• if k > 0 then, for each i from 1 to k,

– find Si ∈ V \T minimizing val(T ∪Si) with Si inducing a connected
component of size i.

– for each i, for each v ∈ Si, run ALG2(T ∪ {v},k − 1);

• else (k = 0), stock the feasible solution T .

output the stocked feasible solution T minimizing val(T ).

The branching tree of ALG2 has size O(k2k). Computing the Si in each
node takes time O∗(∆2k) according to Lemma 8. Thus, the algorithm runs in
O∗((∆k)2k).

For the optimality of ALG2, we use the following lemma.

7



Lemma 10. Let A,B,X,Y be pairwise disjoint sets of vertices such that val (A∪
X) 6 val (B ∪X), N [A] ∩ Y = ∅ and N [B] ∩ Y = ∅. Then, val (A ∪X ∪ Y ) 6
val (B ∪X ∪ Y ).

Proof of Lemma 10. Simply observe that val (A ∪X ∪ Y ) = val (Y ) + val (A ∪
X) − 2α2|E(X,Y )| + α1|E(X,Y )| 6 val (Y ) + val (B ∪ X) − 2α2|E(X,Y )| +
α1|E(X,Y )| = val (B ∪X ∪ Y ), that completes the proof of the lemma.

We now show that ALG2 is sound, using again hybridation between an opti-
mal solution V ′opt and the one solution found by ALG2. We keep the same nota-
tion as in the proof of the soundness of ALG1. Node s is a node of the branching
tree which deviates from V ′opt, all nodes in the branch between the root and s
are conform to V ′opt, the shared choices constitute the set of vertices T = T (s)
and, for each i, set Si = Si(s) (analogously to v(s) in the previous proof, s is
now linked to the subsets Si computed at this node). Set Vn = V ′opt \ T . Take
a maximal connected (non empty) subset H of Vn. Set S = S|H| and consider
Ve = V ′opt \ H ∪ S = (T ∪ Vn) \ H ∪ S = T ∪ S ∪ (Vn \ H). Note that, by
hypothesis, N [S] ∩ Vn = ∅ since s is a deviating node. By the choice of S at
the node s, val (T ∪ S) 6 val (T ∪H). So, val (Ve) = val (T ∪ S ∪ (Vn \H)) =
val (T ∪H ∪ (Vn \H)) = val (T ∪ Vn) = val (V ′opt) according to Lemma 10, since
by construction neither N [H] nor N [S], do intersect Vn \H. Iterating the argu-
ment at most k times we get to a leaf of the branching tree of ALG2 which yields
a solution as good as V ′opt. The proof of the theorem is now completed.

Corollary 11. k-densest subgraph and min (k, n− k)-cut can be solved in
O∗((∆k)2k).

Here also, simply observe that the problems mentioned in Corollary 11 are
local graph partitioning problems.

Theorems 4 and 7 improve the O∗(2(∆+1)k ((∆ + 1)k)log((∆+1)k)) time com-
plexity for the corresponding problems given in [5] obtained there by the random
separation technique. Recall that random separation consists of randomly guess-
ing if a vertex is in an optimal subset V ′ of size k (white vertices) or if it is in
N(V ′) \ V ′ (black vertices). For all other vertices the guess has no importance.
As a right guess concerns at most only k + k∆ vertices, it is done with high
probability if we repeat random guesses f(k,∆) times with a suitable function f .
Given a random guess, i.e., a random function g : V → {white,black}, a solution
can be computed in polynomial time by dynamic programming. Although ran-
dom separation (and a fortiori color coding [2]) have also been applied to other
problems than local graph partitioning ones, greediness-for-parameterization
seems to be quite general and improves both running time and easiness of im-
plementation since our algorithms do not need complex derandomizations.

Let us note that the greediness-for-parameterization technique can be even
more general, by enhancing the scope of Definition 1 and can be applied to
problems where the objective function takes into account not only edges but
also vertices. The value of a solution could be defined as a function val :
P(V ) → R such that val (∅) = 0, the contribution of a vertex v in a partial
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(a) Vertices v ∈ V2 and v′ ∈ V1
(that has at least one neighbor in
V1) will be swapped.

V1 V2

v

?
?
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(b) With the swapping the cut size
increases.

Figure 1: Illustration of a swapping

2 Standard parameterization
2.1 Max (k, n− k)-cut
In the sequel, we denote by N(v) the set of neighbors of v in G = (V,E), namely {w ∈ V :
{v, w} ∈ E} and define N [v] = N(v) ∪ {v}. We also use the standard notation G[U ] for any
U ⊆ V to denote the subgraph induced by the vertices of U . In this section, we show that max
(k, n − k)-cut parameterized by the standard parameter, i.e., by the value p of the solution, is
FPT. Using an idea of bounding above the value of an optimal solution by a swapping process
(see Figure ??), we show that the non trivial case satisfies p > k. We also show that p > ∆
holds for non trivial instances and get the situation depicted by Figure ??. The rest of the proof
(see Theorem ??) shows that max (k, n− k)-cut parameterized by k + ∆ is FPT, by designing a
particular branching algorithm. This branching algorithm is based on the following intuitive idea.
Consider a vertex v of maximum degree in the graph. If an optimal solution E(V ′, V \ V ′) is such
that no vertex of N(v) is in V ′, then it is always interesting to take v in V ′ (this provides ∆ edges
to the cut, which is the best we can do). This leads to a branching rule with ∆+1 branches, where
in each branch we take in V ′ one vertex from N [v].

Lemma 1. In a graph with minimum degree r, the optimal value opt of a max (k, n − k)-cut
satisfies opt > min{n− k, rk}.

Proof. We divide arbitrarily the vertices of a graph G = (V,E) into two subsets V1 and V2 of size k
and n−k, respectively. Then, for every vertex v ∈ V2, we check if v has a neighbor in V1. If not, we
try to swap v and a vertex v′ ∈ V1 which has strictly less than r neighbors in V2 (see Figure ??). If
there is no such vertex, then every vertex in V1 has at least r neighbors in V2, so determining a cut
of value at least rk. When swapping is possible, as the minimum degree is r and the neighborhood
of v is entirely contained in V2, moving v from V2 to V1 will increase the value of the cut by at
least r. On the other hand, moving v′ from V1 to V2 will reduce the value of the cut by at most
r − 1. In this way, the value of the cut increases by at least 1.

Finally, either the process has reached a cut of value rk (if no more swap is possible), or every
vertex in V2 has increased the value of the cut by at least 1 (either immediately, or after a swapping
process), which results in a cut of value at least n−k, and the proof of the lemma is completed.

Corollary 2. In a graph with no isolated vertices, the optimal value for max (k, n− k)-cut is at
least min{n− k, k}.

Theorem 3. The max (k, n−k)-cut problem parameterized by the standard parameter p is FPT.

3

Figure 3: Illustration of a swapping

solution T is δ(v, T ) = val (T ∪ v) − val (T ). Thus, for any subset T , val (T ) =
val (T \ {vk}) + δ(vk, T \ {vk}) where k is the size of T and vk is the last
vertex added to the solution. Hence, val (T ) = Σ16i6kδ(vi, {v1, . . . , vi−1}) +
val (∅) = Σ16i6kδ(vi, {v1, . . . , vi−1}). Now, the only hypothesis we need to show
Theorem 7 is the following: for each T ′ such that (N(T ′) \ T )∩ (N(v) \ T ) = ∅,
δ(v, T ∪ T ′) = δ(v, T ).

Notice also that, that under such modification, max k-dominating set,
asking for a set V ′ of k vertices that dominate the highest number of vertices in
V \V ′ fulfils the enhancement just discussed. We therefore derive the following.

Corollary 12. max k-dominating set can be solved in O∗((∆k)2k.

3 Standard parameterization for max and min
(k, n− k)-cut

3.1 Max (k, n− k)-cut
In the sequel, we use the standard notation G[U ] for any U ⊆ V to denote
the subgraph induced by the vertices of U . In this section, we show that max
(k, n− k)-cut parameterized by the standard parameter, i.e., by the value p of
the solution, is FPT. Using an idea of bounding above the value of an optimal
solution by a swapping process (see Figure 3), we show that the non-trivial case
satisfies p > k. We also show that p > ∆ holds for non trivial instances and
get the situation illustrated in Figure 4. The rest of the proof is an immediate
application of Corollary 6.

Lemma 13. In a graph with minimum degree r, the optimal value opt of a
max (k,n-k)-cut satisfies opt > min{n− k, rk}.
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2 Standard parameterization
2.1 Max (k, n− k)-cut
In the sequel, we denote by N(v) the set of neighbors of v in G = (V,E), namely {w ∈ V :
{v, w} ∈ E} and define N [v] = N(v) ∪ {v}. We also use the standard notation G[U ] for any
U ⊆ V to denote the subgraph induced by the vertices of U . In this section, we show that max
(k, n − k)-cut parameterized by the standard parameter, i.e., by the value p of the solution, is
FPT. Using an idea of bounding above the value of an optimal solution by a swapping process
(see Figure ??), we show that the non trivial case satisfies p > k. We also show that p > ∆
holds for non trivial instances and get the situation depicted by Figure ??. The rest of the proof
(see Theorem ??) shows that max (k, n− k)-cut parameterized by k + ∆ is FPT, by designing a
particular branching algorithm. This branching algorithm is based on the following intuitive idea.
Consider a vertex v of maximum degree in the graph. If an optimal solution E(V ′, V \ V ′) is such
that no vertex of N(v) is in V ′, then it is always interesting to take v in V ′ (this provides ∆ edges
to the cut, which is the best we can do). This leads to a branching rule with ∆+1 branches, where
in each branch we take in V ′ one vertex from N [v].

Lemma 1. In a graph with minimum degree r, the optimal value opt of a max (k, n − k)-cut
satisfies opt > min{n− k, rk}.

Proof. We divide arbitrarily the vertices of a graph G = (V,E) into two subsets V1 and V2 of size k
and n−k, respectively. Then, for every vertex v ∈ V2, we check if v has a neighbor in V1. If not, we
try to swap v and a vertex v′ ∈ V1 which has strictly less than r neighbors in V2 (see Figure ??). If
there is no such vertex, then every vertex in V1 has at least r neighbors in V2, so determining a cut
of value at least rk. When swapping is possible, as the minimum degree is r and the neighborhood
of v is entirely contained in V2, moving v from V2 to V1 will increase the value of the cut by at
least r. On the other hand, moving v′ from V1 to V2 will reduce the value of the cut by at most
r − 1. In this way, the value of the cut increases by at least 1.

Finally, either the process has reached a cut of value rk (if no more swap is possible), or every
vertex in V2 has increased the value of the cut by at least 1 (either immediately, or after a swapping
process), which results in a cut of value at least n−k, and the proof of the lemma is completed.

Corollary 2. In a graph with no isolated vertices, the optimal value for max (k, n− k)-cut is at
least min{n− k, k}.

Theorem 3. The max (k, n−k)-cut problem parameterized by the standard parameter p is FPT.

3

Figure 3: Illustration of a swapping
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Proof. We divide arbitrarily the vertices of a graph G = (V,E) into two sub-
sets V1 and V2 of size k and n− k, respectively. Then, for every vertex v ∈ V2,
we check if v has a neighbor in V1. If not, we try to swap v and a vertex v′ ∈ V1
which has strictly less than r neighbors in V2 (see Figure 3). If there is no such
vertex, then every vertex in V1 has at least r neighbors in V2, so determining a
cut of value at least rk. When swapping is possible, as the minimum degree is r
and the neighborhood of v is entirely contained in V2, moving v from V2 to V1
will increase the value of the cut by at least r. On the other hand, moving v′
from V1 to V2 will reduce the value of the cut by at most r− 1. In this way, the
value of the cut increases by at least 1.

Finally, either the process has reached a cut of value rk (if no more swap is
possible), or every vertex in V2 has increased the value of the cut by at least 1
(either immediately, or after a swapping process), which results in a cut of value
at least n− k, and the proof of the lemma is completed.

Corollary 14. In a graph with no isolated vertices, the optimal value for max
(k, n− k)-cut is at least min{n− k, k}.

Then, Corollary 6 suffices to conclude the proof of the the following theorem.

Theorem 15. The max (k, n−k)-cut problem parameterized by the standard
parameter p is FPT.

3.2 Min (k, n− k)-cut
Unfortunately, unlike what have been done for max (k, n−k)-cut, we have not
been able to show until now that the case p < k is “trivial”. So, Algorithm ALG2
in Section 2 cannot be transformed into a standard FPT algorithm for this
problem.

However, we can prove that when p > k, then min (k, n − k)-cut parame-
terized by the value p of the solution is FPT. This is an immediate corollary of
the following proposition.

Proposition 16. min (k, n− k)-cut parameterized by p+ k is FPT.

Proof. Each vertex v such that |N(v)| > k+p has to be in V \V ′ (of size n−k).
Indeed, if one puts v in V ′ (of size k), among its k + p incident edges, at least
p+1 leave from V ′; so, it cannot yield a feasible solution. All the vertices v such
that |N(v)| > k + p are then rejected. Thus, one can adapt the FPT algorithm

10



in k + ∆ of Theorem 7 by considering the k-neighborhood of a vertex v not in
the whole graph G, but in G[T ∪ U ]. One can easily check that the algorithm
still works and since in those subgraphs the degree is bounded by p+ k we get
an FPT algorithm in p+ k.

In [9], it is shown that, for any ε > 0, there exists a randomized (1 + εk
logn )-

approximation for min (k, n − k)-cut. From this result, we can easily derive
that when p < logn

k then the problem is solvable in polynomial time (by a
randomized algorithm). Indeed, fixing ε = 1, the algorithm in [9] is a (1+ k

log(n) )-
approximation. This approximation ratio is strictly better than 1 + 1

p . This
means that the algorithm outputs a solution of value lower than p+ 1, hence at
most p, if there exists a solution of value at most p.

We now conclude this section by claiming that, when p 6 k, min (k, n− k)-
cut can be solved in time O∗(np).

Proposition 17. If p 6 k, then min (k, n−k)-cut can be solved in timeO∗(np).

Proof. Since p 6 k, there exist in the optimal set V ′, p′ 6 p vertices incident to
the p outgoing edges. So, the k− p′ remaining vertices of V ′ induce a subgraph
that is disconnected from G[V \ V ′].

Hence, one can enumerate all the p′ 6 p subsets of V . For each such subset Ṽ ,
the graph G[V \ Ṽ ] is disconnected. Denote by C = (Ci)06i6|C| the connected
components of G[V \ Ṽ ] and by αi the number of edges between Ci and Ṽ . We
have to pick a subset C ′ ⊂ C among these components such that

∑
Ci∈C′ |Ci| =

k − p′ and maximizing
∑
Ci∈C′ αi. This can be done in polynomial time using

standard dynamic programming techniques.

4 Other parameterizations
4.1 Parameterization by k and approximation of max and

min (k, n− k)-cut
Recall that both max and min (k, n − k)-cut parameterized by k are W[1]-
hard [8, 4]. In this section, we give some approximation algorithms working in
FPT time with respect to parameter k.

Proposition 18. max (k, n−k)-cut, parameterized by k has a fixed-parameter
approximation schema. On the other hand, min (k, n − k)-cut parameterized
by k has a randomized fixed-parameter approximation schema.

Proof. We first handle max (k,n-k)-cut. Fix some ε > 0. Given a graph G =
(V,E), let d1 6 d2 6 . . . 6 dk be the degrees of the k largest-degree vertices
v1, v2, . . . vk in G. An optimal solution of value opt is obviously bounded from
above by B = Σki=1di. Now, consider solution V ′ = {v1, v2, . . . , vk}. As there
exist at most k(k−1)/2 6 k2/2 (when V ′ is a k-clique) inner edges, solution V ′
has a value sol at least B − k2. Hence, the approximation ratio is at least
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B−k2

B = 1− k2

B . Since, obviously, B > d1 = ∆, an approximation ratio at least
1− k2

∆ is immediately derived.
If ε > k2

∆ then V ′ is a (1−ε)-approximation. Otherwise, if ε 6 k2

∆ , then ∆ 6
k2

ε . So, the branching algorithm of Theorem 15 with time-complexity O∗(∆k)
is in this case an O∗(k2k

εk )-time algorithm.
For min (k,n-k)-cut, it is proved in [9] that, for ε > 0, if k < logn, then there

exists a randomized polynomial time (1 + ε)-approximation. Else, if k > logn,
the exhaustive enumeration of the k-subsets takes time O∗(nk) = O∗((2k)k) =
O∗(2k2).

Finding approximation algorithms that work in FPT time with respect to
parameter p is an interesting question. Combining the result of [9] and an
O(log1.5(n))-approximation algorithm in [10] we can show that the problem
is O(k3/5) approximable in polynomial time by a randomized algorithm. But,
is it possible to improve this ratio when allowing FPT time (with respect to p)?

4.2 Parameterization by the treewidth and the vertex co-
ver number

When dealing with parameterization of graph problems, some classical param-
eters arise naturally. One of them, very frequently used in the fixed parameter
literature is the treewidth of the graph.

It has already been proved that min and max (k, n − k)-cut, as well as
k-densest subgraph can be solved in O∗(2tw) [3, 12]. We show here that the
algorithm in [3] can be adapted to handle the whole class of local problems,
deriving so the following result.

Proposition 19. Any local graph partitioning problem can be solved in time
O∗(2tw).

Proof. A tree decomposition of a graph G(V,E) is a pair (X,T ) where T is a
tree on vertex set N(T ) the vertices of which are called nodes and X = ({Xi :
i ∈ N(T )}) is a collection of subsets of V such that: (i) ∪i∈N(T )Xi = V , (ii) for
each edge (v, w) ∈ E, there exist an i ∈ N(T ) such that {v, w} ∈ Xi, and
(iii) for each v ∈ V , the set of nodes {i : v ∈ Xi} forms a subtree of T . The
width of a tree decomposition ({Xi : i ∈ N(T )}, T ) equals maxi∈N(T ){|Xi|−1}.
The treewidth of a graph G is the minimum width over all tree decompositions
of G. We say that a tree decomposition is nice if any node of its tree that is not
the root is one of the following types:

• a leaf that contains a single vertex from the graph;

• an introduce node Xi with one child Xj such that Xi = Xj ∪{v} for some
vertex v ∈ V ;

• a forget node Xi with one child Xj such that Xj = Xi ∪ {v} for some
vertex v ∈ V ;

12



• a join node Xi with two children Xj and Xl such that Xi = Xj = Xl.

Assume that the local graph partitioning problem Π is a minimization problem
(we want to find V ′ such that val(V ′) 6 p), the maximization case being similar.
An algorithm that transforms in linear time an arbitrary tree decomposition into
a nice one with the same treewidth is presented in [12]. Consider a nice tree
decomposition ofG and let Ti be the subtree of T rooted atXi, andGi = (Vi, Ei)
be the subgraph of G induced by the vertices in

⋃
Xj∈Ti

Xj . For each node
Xi = (v1, v2, . . . , v|Xi|) of the tree decomposition, define a configuration vector
~c ∈ {0, 1}|Xi|; ~c[j] = 1⇐⇒ vj ∈ Xi belongs to the solution. Moreover, for each
node Xi, consider a table Ai of size 2|Xi|× (k+ 1). Each row of Ai represents a
configuration and each column represents the number k′, 0 6 k′ 6 k, of vertices
in Vi \ Xi included in the solution. The value of an entry of this table equals
the value of the best solution respecting both the configuration vector and the
number k′, and −∞ is used to define an infeasible solution. In the sequel, we
set Xi,t = {vh ∈ Xi : ~c(h) = 1} and Xi,r = {vh ∈ Xi : ~c(h) = 0}.

The algorithm examines the nodes of T in a bottom-up way and fills in the
table Ai for each node Xi. In the initialization step, for each leaf node Xi and
each configuration ~c, we have Ai[~c, k′] = 0 if k′ = 0; otherwise Ai[~c, k′] = −∞.

If Xi is a forget node, then consider a configuration ~c for Xi. In Xj this
configuration is extended with the decision whether vertex v is included into
the solution or not. Hence, taking into account that v ∈ Vi \Xi we get:

Ai [~c, k′] = min {Aj [~c× {0}, k′] , Aj [~c× {1}, k′ − 1]}

for each configuration ~c and each k′, 0 6 k′ 6 k.
IfXi is an introduce node, then consider a configuration ~c forXj . If v is taken

in V ′, its inclusion adds the quantity δv = α1|E({v}, Xi,t)| + α2|E({v}, Xi,r)|
to the solution. The crucial point is that δv does not depend on the k′ vertices
of Vi \Xi taken in the solution. Indeed, by construction a vertex in Vi \Xi has
its subtree entirely contained in Ti. Besides, the subtree of v intersects Ti only
in its root, since v appears in Xi, disappears from Xj and has, by definition, a
connected subtree. So, we know that there is no edge in G between v and any
vertex of Vi \Xi. Hence, Ai[~c×{1}, k′] = Aj [~c, k′] + δv, since k′ counts only the
vertices of the current solution in Vi \Xi. The case where v is discarded from
the solution (not taken in V ′) is completely similar; we just define δv according
to the number of edges linking v to vertices of Ti respectively in V ′ and not
in V ′.

If Xi is a join node, then for each configuration ~c for Xi and each k′, 0 6
k′ 6 k, we have to find the best solution obtained by kj , 0 6 kj 6 k′, vertices
in Aj plus k′ − kj vertices in Al. However, the quantity δ~c = α1|E(Xi,t)| +
α2|E(Xi,t, Xi,r)| is counted twice. Note that δ~c depends only on Xi,t and Xi,r,
since there is no edge between Vl \Xi and Vj \Xi. Hence, we get:

Ai [~c, k′] = max
06kj6k′

{Aj [~c, kj ] +Al [~c, k′ − kj ]} − δc

and the proof of the proposition is completed.
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Corollary 20. Restricted to trees, any local graph partitioning problem can
be solved in polynomial time.

Corollary 21. min bisection parameterized by the treewidth of the input
graph is FPT.

It is worth noticing that the result easily extends to the weighted case (where
edges are weighted) and to the case of partitioning V into a constant number
of classes (with a higher running time).

Another natural parameter frequently used in the parameterized complexity
framework is the size τ of a minimum vertex cover of the input graph. Since
it always holds that tw 6 τ , the result of Proposition 19 immediately applies
to parameterization by τ . However, the algorithm developed there needs expo-
nential space. In what follows, we give a simple parameterization by τ using
polynomial space.

Proposition 22. max and min (k, n−k)-cut parameterized by τ can be solved
in FPT O∗(2τ ) time and in polynomial space.

Proof. Consider the following algorithm:

• compute a minimum vertex cover C of G;

• for every subset X of C of size |X| smaller than k, complete X with the
k − |X| vertices of V \ C that maximize (resp., minimize) their incidence
with C \X (i.e., the number of neighbours in C \X);

• output the best solution.

Recall that a minimum size vertex cover can be computed in time O∗(1.2738τ )
time by means of the fixed-parameter algorithm of [6] and using polynomial
space. The operation on every subset is polynomial, so the global computation
time is at most O∗(2τ ).

The soundness follows from the fact that a complement of a vertex cover is
an independent set. Denoting by V ′ the optimal vertex-set (i.e., the k vertices
inducing an optimal cut), then V ′ ∩ C will be considered by the above algo-
rithm, and then every vertex of the completion will add exactly to the solution
its number of neighbors in V ′ ∩ C, which is maximized (or minimized) in the
algorithm.
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