Abstract
We study the parameterized complexity of a broad class of problems called “local graph partitioning problems” that includes the classical fixed cardinality problems as max k -vertex cover, k -densest subgraph, etc. By developing a technique that we call “greediness-for-parameterization”, we obtain fixed parameter algorithms with respect to a pair of parameters k, the size of the solution (but not its value) and \(\varDelta\), the maximum degree of the input graph. In particular, greediness-for-parameterization improves asymptotic running times for these problems upon random separation (that is a special case of color coding) and is more intuitive and simple. Then, we show how these results can be easily extended for getting standard-parameterization results (i.e., with parameter the value of the optimal solution) for a well known local graph partitioning problem.
Research supported by the French Agency for Research under the program TODO, ANR-09-EMER-010.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cai, L.: Parameter complexity of cardinality constrained optimization problems. The Computer Journal 51, 102–121 (2008)
Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cutting up is hard to do: the parameterized complexity of k-cut and related problems. Electronic Notes in Theoretical Computer Science, vol. 78, pp. 205–218. Elsevier (2003)
Fomin, F.V., Golovach, P.A., Korhonen, J.H.: On the parameterized complexity of cutting a few vertices from a graph. Technical report, CoRR, abs/1304.6189 (2013)
Marx, D.: Parameterized complexity and approximation algorithms. The Computer Journal 51, 60–78 (2008)
Feige, U., Krauthgamer, R., Nissim, K.: On cutting a few vertices from a graph. Discrete Appl. Math. 127, 643–649 (2003)
Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 17–30. Springer, Heidelberg (1999)
Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41, 174–211 (2001)
Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)
Lewis, H.R., Papadimitriou, C.H.: Elements of the theory of computation. Prentice-Hall (1981)
Maneth, S.: Logic and automata. Lecture 3: Expressiveness of MSO graph properties. Logic Summer School (2006)
Szeider, S.: Monadic second order logic on graphs with local cardinality constraints. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 601–612. Springer, Heidelberg (2008)
Bonnet, E., Escoffier, B., Paschos, V.T., Tourniaire, E.: Multi-parameter complexity analysis for constrained size graph problems: using greediness for parameterization. CoRR abs/1306.2217 (2013)
Cai, L., Chan, S.M., Chan, S.O.: Random separation: a new method for solving fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)
Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42, 844–856 (1995)
Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and approximation algorithms for densest k -subgraph. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 114–125. Springer, Heidelberg (2013)
Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Bonnet, É., Escoffier, B., Paschos, V.T., Tourniaire, É. (2013). Multi-parameter Complexity Analysis for Constrained Size Graph Problems: Using Greediness for Parameterization. In: Gutin, G., Szeider, S. (eds) Parameterized and Exact Computation. IPEC 2013. Lecture Notes in Computer Science, vol 8246. Springer, Cham. https://doi.org/10.1007/978-3-319-03898-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-03898-8_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03897-1
Online ISBN: 978-3-319-03898-8
eBook Packages: Computer ScienceComputer Science (R0)