Skip to main content

Effects of Exercise in Diabetic Rats Using Continuous Wavelet Transform

  • Conference paper
Ambient Media and Systems (AMBI-SYS 2013)

Abstract

This paper explores an approach to study entropy differentiations of heart’s activities estimation in Low Frequency (LF) and High Frequency (HF) bands. Dataset composed of 34 ECGs, obtained from healthy and diabetic rats under normal and exercise living conditions. RR intervals extracted efficiently in order to create Heart Rate (HR) time series. Continuous Wavelet Transform (CWT) has been used, as the most appropriate approach, to evaluate the effects of exercise on healthy and diabetic HR variability (HRV). Statistical analysis performed taking into account both wavelet entropy in the low and the high frequency selected bands and the corresponding index LF/HF of the wavelet coefficients. Our results show that wavelet entropy measure based on CWT decomposition can capture significant differences between the specific frequency regions that are intrinsically related to the structure of the RR signal. According to our analysis, diabetic rats living under exercise conditions appear to have a reduced LF/HF entropy ratio compared to healthy population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akay, M., Mello, C.: Wavelets for biomedical signal processing. In: 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, pp. 2688–2691 (1997)

    Google Scholar 

  2. Stein, P.K., Kleiger, R.E.: Insights from the study of heart rate variability. Annual Review of Medicine 50, 249–261 (1999)

    Article  Google Scholar 

  3. King, H., Aubert, R.E., Herman, W.H.: Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21, 1414–1431 (1998)

    Article  Google Scholar 

  4. Tuomilehto, J., Borch-Johnsen, K., Molarius, A., Forsen, T., Rastenyte, D., Sarti, C., Reunanen, A.: Incidence of cardiovascular disease in Type 1 (insulin-dependent) diabetic subjects with and with-out diabetic nephropathy in Finland. Diabetologia 41, 784–790 (1998)

    Article  Google Scholar 

  5. Helmrich, S.P., Ragland, D.R., Leung, R.W., Paffenbarger, R.S.: Physical activity and reduced occurrence of non-Insulin-dependent diabetes Mellitus. New England Journal of Medicine 325, 147–152 (1991)

    Article  Google Scholar 

  6. Couderc, J.P., Zareba, W.: Contributions of wavelets to non-invasive electro-cardiology. Ann. Noninvasive Electrocardiol. 3, 54–62 (1998)

    Article  Google Scholar 

  7. Gramatikov, B., Thakor, N.: Wavelet analysis of coronary artery occlusion related changes in ECG. In: 15th Intern. Annual Conf. IEEE/EMBS, San Diego, p. 731 (1993)

    Google Scholar 

  8. Nagendra, H., Mukherjee, S., Vinod, K.: Application of wavelet techniques in ECG Signal processing: An overview. International Journal of Engineering Science and Technology 3, 7432–7443 (2011)

    Google Scholar 

  9. Jeong, Y.H., Su, K.L., Hong, B.P.: Denoising ECG using translation invariant multiwavelet. International Journal of Electrical and Electronics Engineering 3, 138–142 (2009)

    Google Scholar 

  10. Arvinti, B., Costache, M., Toader, D., Oltean, M., Isar, A.: ECG statistical denoising in the wavelet domain. In: 9th IEEE International Symposium of Electronics and Telecommunications, ISETC, Timisoara, pp. 307–310 (2010)

    Google Scholar 

  11. Quain, Q.R., Rosso, O.A., Basar, E., Schurmann, E.: Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations. Biol. Cybern. 84, 291–299 (2001)

    Article  MATH  Google Scholar 

  12. Bunluechokchai, S., English, M.J.: Detection of wavelet transform-processed ventricular late potentials and approximate entropy. IEEE Computers in Cardiology, 549–552 (2003)

    Google Scholar 

  13. Figliola, F., Serrano, E.: Analysis of physiological time series using wavelet transforms. IEEE Eng. Med. and Bio. Mag., 74–79 (1997)

    Google Scholar 

  14. Mallet, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal. and Machine Intell. 11 (1989)

    Google Scholar 

  15. Kadambe, S., Murray, R., Boudreaux-Bartels, G.F.: Wavelet transform - based QRS complex detector. IEEE Transactions on Biomedical Engineering 46, 838–848 (1999)

    Article  Google Scholar 

  16. Li, C., Zheng, C., Tai, C.: Detection of ECG characteristic points using wavelet transforms. IEEE Transactions on Biomedical Engineering 42, 21–28 (1995)

    Article  Google Scholar 

  17. Pichot, V., Roche, F., Gaspoz, J.M., Enjolras, F., Antoniadis, A., Minini, P., Costes, F., Busso, T., Lacour, J.R., Barthelemy, J.C.: Relation between heart rate variability and training load in middle-distance runners. Medicine and Science in Sports and Exercise 32, 1729–1736 (2000)

    Article  Google Scholar 

  18. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36, 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oikonomidis, D.L., Tsalikakis, D.G., Baltogiannis, G.G., Tzallas, A.T., Xourgia, X., Agelaki, M.G., Megalou, A.J., Fotopoulos, A., Papalois, A., Kyriakides, Z.S., Kolettis, T.M.: Endothelin-B receptors and ventricular arrhythmogenesis in the rat model of acute myocardial infarction. Basic Research in Cardiology 2, 235–245 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Tsalikakis, D.G., Nakos, I., Tzallas, A.T., Karvounis, E., Tsipouras, M. (2013). Effects of Exercise in Diabetic Rats Using Continuous Wavelet Transform. In: Angelis, C.T., Fotiadis, D., Tzallas, A.T. (eds) Ambient Media and Systems. AMBI-SYS 2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-04102-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04102-5_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04101-8

  • Online ISBN: 978-3-319-04102-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics