Abstract
The modern automotive industry has to meet the requirement of providing a safer, more comfortable and interactive driving experience. Depth information retrieved from a stereo vision system is one significant resource enabling vehicles to understand their environment. Relying on the stixel, a compact representation of depth information using thin planar rectangles, the problem of processing huge amounts of depth data in real-time can be solved. In this paper, we present an efficient lossless compression scheme for stixels, which further reduces the data volume by a factor of 3.3863. The predictor of the proposed approach is adapted from the LOCO-I (LOw COmplexity LOssless COmpression for Images) algorithm in the JPEG-LS standard. The compressed stixel data could be sent to the in-vehicle communication bus system for future vehicle applications such as autonomous driving and mixed reality systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Badino, H., Franke, U., Pfeiffer, D.: The Stixel World - A Compact Medium Level Representation of the 3D-World. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 51–60. Springer, Heidelberg (2009)
Pfeiffer, D., Franke, U.: Efficient Representation of Traffic Scenes by Means of Dynamic Stixels. In: IEEE Intelligent Vehicles Symposium (IV), pp. 217–224. IEEE Press, New York (2010)
Pfeiffer, D., Franke, U.: Towards a Global Optimal Multi-Layer Stixel Representation of Dense 3D Data. In: 22nd British Machine Vision Conference. British Machine Vision Association, Manchester (2011)
Pfeiffer, D., Gehrig, S.K., Schneider, N.: Exploiting the Power of Stereo Confidences. To Appear. In: Conference on Computer Vision and Pattern Recognition. IEEE Press, New York (2013)
ISO 11898-1: Road Vehicles – Controller Area Network (CAN) – Part 1: Data Link Layer and Physical Signaling (2003)
FlexRay Consortium: FlexRay Communications System-Protocol Specification, Version 2.1, Revision A (2005)
Weinberger, M.J.: LOCO-I: A Low Complexity, Context-based, Lossless Image Compression Algorithm. In: Data Compression Conference, pp. 140–149. IEEE Press, New York (1996)
Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS. IEEE Transactions on Image Processing 9(8), 1309–1324 (2000)
Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms. International Journal of Computer Vision 47, 7–42 (2002)
Hirschmüller, H.: Improvements in Real-time Correlation-based Stereo Vision. In: IEEE Workshop on Stereo and Multi-Baseline Vision, pp. 141–148. IEEE Press, New York (2001)
Hirschmüller, H., Innocent, P.R., Garibaldi, J.M.: Real-time Correlation-based Stereo Vision with Reduced Border Errors. International Journal of Computer Vision 47, 229–246 (2002)
Ding, J., Du, X., Wang, X., Liu, J.: Improved Real-time Correlation-based FPGA Stereo Vision System. In: International Conference on Mechatronics and Automation, pp. 104–108. IEEE Press, New York (2010)
Hirschmüller, H.: Accurate and Efficient Stereo Processing by Semi-global Matching and Mutual Information. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 807–814. IEEE Press, New York (2005)
Gehrig, S.K., Eberli, F., Meyer, T.: A Real-time Low-power Stereo Engine Using Semi-global Matching. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 134–143. Springer, Heidelberg (2009)
Badino, H., Mester, R., Vaudrey, T., Franke, U.: Stereo-based Free Space Computation in Complex Traffic Scenarios. In: IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 189–192. IEEE Press, New York (2008)
Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE 40(9), 1098–1101 (1952)
Golomb, S.W.: Run-length Encodings. IEEE Transactions on Information Theory 12(3), 399–401 (1966)
Howard, P.G., Vitter, J.S.: Fast and Efficient Lossless Image Compression. In: Data Compression Conference, pp. 351–360. IEEE Press, New York (1993)
Wu, X., Memon, N.: Context-based, Adaptive, Lossless Image Coding. IEEE Transactions on Communications 45(4), 437–444 (1997)
Gallager, R., Voorhis, D.V.: Optimal Source Codes for Geometrically Distributed Integer Alphabets. IEEE Transactions on Information Theory 21(2), 228–230 (1975)
Liu, Z., Qian, L., Bo, Y., Li, H.: An Improved Lossless Image Compression Algorithm LOCO-R. In: International Conference on Computer Design and Applications, vol. 1, pp. (V1)328–(V1)331. IEEE Press, New York (2010)
Zlib Home Page, http://www.zlib.net/
Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)
Zimmermann, W., Schmidgall, R.: Bussysteme in der Fahrzeugtechnik: Protokolle und Standards (2. Auflage) (German Edition). Vieweg Verlag, Wiesbaden (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Rao, Q., Grünler, C., Hammori, M., Chakraborty, S. (2014). Stixel on the Bus: An Efficient Lossless Compression Scheme for Depth Information in Traffic Scenarios. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8325. Springer, Cham. https://doi.org/10.1007/978-3-319-04114-8_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-04114-8_48
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04113-1
Online ISBN: 978-3-319-04114-8
eBook Packages: Computer ScienceComputer Science (R0)