Skip to main content

Stixel on the Bus: An Efficient Lossless Compression Scheme for Depth Information in Traffic Scenarios

  • Conference paper
MultiMedia Modeling (MMM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8325))

Included in the following conference series:

  • 3416 Accesses

Abstract

The modern automotive industry has to meet the requirement of providing a safer, more comfortable and interactive driving experience. Depth information retrieved from a stereo vision system is one significant resource enabling vehicles to understand their environment. Relying on the stixel, a compact representation of depth information using thin planar rectangles, the problem of processing huge amounts of depth data in real-time can be solved. In this paper, we present an efficient lossless compression scheme for stixels, which further reduces the data volume by a factor of 3.3863. The predictor of the proposed approach is adapted from the LOCO-I (LOw COmplexity LOssless COmpression for Images) algorithm in the JPEG-LS standard. The compressed stixel data could be sent to the in-vehicle communication bus system for future vehicle applications such as autonomous driving and mixed reality systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Badino, H., Franke, U., Pfeiffer, D.: The Stixel World - A Compact Medium Level Representation of the 3D-World. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 51–60. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Pfeiffer, D., Franke, U.: Efficient Representation of Traffic Scenes by Means of Dynamic Stixels. In: IEEE Intelligent Vehicles Symposium (IV), pp. 217–224. IEEE Press, New York (2010)

    Google Scholar 

  3. Pfeiffer, D., Franke, U.: Towards a Global Optimal Multi-Layer Stixel Representation of Dense 3D Data. In: 22nd British Machine Vision Conference. British Machine Vision Association, Manchester (2011)

    Google Scholar 

  4. Pfeiffer, D., Gehrig, S.K., Schneider, N.: Exploiting the Power of Stereo Confidences. To Appear. In: Conference on Computer Vision and Pattern Recognition. IEEE Press, New York (2013)

    Google Scholar 

  5. ISO 11898-1: Road Vehicles – Controller Area Network (CAN) – Part 1: Data Link Layer and Physical Signaling (2003)

    Google Scholar 

  6. FlexRay Consortium: FlexRay Communications System-Protocol Specification, Version 2.1, Revision A (2005)

    Google Scholar 

  7. Weinberger, M.J.: LOCO-I: A Low Complexity, Context-based, Lossless Image Compression Algorithm. In: Data Compression Conference, pp. 140–149. IEEE Press, New York (1996)

    Google Scholar 

  8. Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS. IEEE Transactions on Image Processing 9(8), 1309–1324 (2000)

    Article  Google Scholar 

  9. Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms. International Journal of Computer Vision 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  10. Hirschmüller, H.: Improvements in Real-time Correlation-based Stereo Vision. In: IEEE Workshop on Stereo and Multi-Baseline Vision, pp. 141–148. IEEE Press, New York (2001)

    Chapter  Google Scholar 

  11. Hirschmüller, H., Innocent, P.R., Garibaldi, J.M.: Real-time Correlation-based Stereo Vision with Reduced Border Errors. International Journal of Computer Vision 47, 229–246 (2002)

    Article  MATH  Google Scholar 

  12. Ding, J., Du, X., Wang, X., Liu, J.: Improved Real-time Correlation-based FPGA Stereo Vision System. In: International Conference on Mechatronics and Automation, pp. 104–108. IEEE Press, New York (2010)

    Google Scholar 

  13. Hirschmüller, H.: Accurate and Efficient Stereo Processing by Semi-global Matching and Mutual Information. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 807–814. IEEE Press, New York (2005)

    Google Scholar 

  14. Gehrig, S.K., Eberli, F., Meyer, T.: A Real-time Low-power Stereo Engine Using Semi-global Matching. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 134–143. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Badino, H., Mester, R., Vaudrey, T., Franke, U.: Stereo-based Free Space Computation in Complex Traffic Scenarios. In: IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 189–192. IEEE Press, New York (2008)

    Google Scholar 

  16. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  17. Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE 40(9), 1098–1101 (1952)

    Article  Google Scholar 

  18. Golomb, S.W.: Run-length Encodings. IEEE Transactions on Information Theory 12(3), 399–401 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  19. Howard, P.G., Vitter, J.S.: Fast and Efficient Lossless Image Compression. In: Data Compression Conference, pp. 351–360. IEEE Press, New York (1993)

    Google Scholar 

  20. Wu, X., Memon, N.: Context-based, Adaptive, Lossless Image Coding. IEEE Transactions on Communications 45(4), 437–444 (1997)

    Article  Google Scholar 

  21. Gallager, R., Voorhis, D.V.: Optimal Source Codes for Geometrically Distributed Integer Alphabets. IEEE Transactions on Information Theory 21(2), 228–230 (1975)

    Article  MATH  Google Scholar 

  22. Liu, Z., Qian, L., Bo, Y., Li, H.: An Improved Lossless Image Compression Algorithm LOCO-R. In: International Conference on Computer Design and Applications, vol. 1, pp. (V1)328–(V1)331. IEEE Press, New York (2010)

    Google Scholar 

  23. Zlib Home Page, http://www.zlib.net/

  24. Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zimmermann, W., Schmidgall, R.: Bussysteme in der Fahrzeugtechnik: Protokolle und Standards (2. Auflage) (German Edition). Vieweg Verlag, Wiesbaden (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rao, Q., Grünler, C., Hammori, M., Chakraborty, S. (2014). Stixel on the Bus: An Efficient Lossless Compression Scheme for Depth Information in Traffic Scenarios. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8325. Springer, Cham. https://doi.org/10.1007/978-3-319-04114-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04114-8_48

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04113-1

  • Online ISBN: 978-3-319-04114-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics