Abstract
When large-scale online geo-tagged images come into view, it is important to leverage geographic information for web image retrieval. In this paper, a geo-metadata based image retrieval system is proposed using both textual tags and visual features. This image retrieval system is especially useful for tourism related tasks such as tourism recommendation and tourism guide. First, the requested image retrieval task is classified into one of the three different types according to the retrieval purpose, and then it can be handled with specific method. Second, a WordNet hierarchy based semantic similarity is developed to measure the similarity between different cities. This semantic similarity is somehow consistent with the visual similarity. Finally, a high-level image representation method is proposed to narrow the semantic gap between the low-level visual features and high-level image concepts. The proposed algorithm is evaluated on an image set which is consisted of totally 177,158 images of 120 most popular cities all over the world collected from Flickr, and the experiments have provided very positive results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)
Fan, J., He, X., Zhou, N., Peng, J., Jain, R.: Quantitative characterization of semantic gaps for learning complexity estimation and inference model selection. IEEE Transactions on Multimedia 14(5), 1414–1428 (2012)
Fan, J., Keim, D.A., Gao, Y., Luo, H., Li, Z.: Justclick: Personalized image recommendation via exploratory search from large-scale flickr images. IEEE Transactions on Circuits and Systems for Video Technology 19(2), 273–288 (2009)
Hays, J., Efros, A.A.: IM2GPS: estimating geographic information from a single image. In: CVPR, pp. 1–8. IEEE (2008)
Liang, C.-K., Hsieh, Y.-T., Chuang, T.-J., Wang, Y., Weng, M.-F., Chuang, Y.-Y.: Learning landmarks by exploiting social media. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, Y.-P.P. (eds.) MMM 2010. LNCS, vol. 5916, pp. 207–217. Springer, Heidelberg (2010)
Cao, L., Luo, J., Gallagher, A., Jin, X., Han, J., Huang, T.S.: A world wide tourism recommendation system based on geotagged web photos. In: ICASSP, pp. 2274–2277. IEEE (2010)
Yang, Y., Gong, Z., et al.: Identifying points of interest by self-tuning clustering. In: SIGIR, pp. 883–892. ACM (2011)
Li, J., Qian, X., Tang, Y.Y., Yang, L., Liu, C.: GPS estimation from users’ photos. In: Li, S., El Saddik, A., Wang, M., Mei, T., Sebe, N., Yan, S., Hong, R., Gurrin, C. (eds.) MMM 2013, Part I. LNCS, vol. 7732, pp. 118–129. Springer, Heidelberg (2013)
Li, J., Qian, X., Tang, Y.Y., Yang, L., Mei, T.: GPS estimation for places of interest from social users uploaded photos. IEEE Transactions on Multimedia (2014)
Miller, G.: Wordnet: a lexical database for English. Communications of the ACM 38(11), 39–41 (1995)
Fellbaum, C.: Wordnet. Theory and Applications of Ontology: Computer Applications, pp. 231–243 (2010)
Li, L.J., Su, H., Fei-Fei, L., Xing, E.P.: Object bank: A high-level image representation for scene classification & semantic feature sparsification. In: NIPS, pp. 1378–1386 (2010)
Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR, pp. 951–958. IEEE (2009)
Torresani, L., Szummer, M., Fitzgibbon, A.: Efficient object category recognition using classemes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 776–789. Springer, Heidelberg (2010)
Kennedy, L.S., Naaman, M.: Generating diverse and representative image search results for landmarks. In: WWW, pp. 297–306. ACM (2008)
Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s photos. In: WWW, pp. 761–770. ACM (2009)
Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research 155, 23–36 (2006)
Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 2, pp. 1150–1157. IEEE (1999)
Simpson, T., Crowe, M.: Wordnet.net (2005), http://opensource.ebswift.com/WordNet.Net
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Dong, P., Mei, K., Zhang, J., Lei, H., Fan, J. (2014). Task-Driven Image Retrieval Using Geographic Information. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8326. Springer, Cham. https://doi.org/10.1007/978-3-319-04117-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-04117-9_20
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04116-2
Online ISBN: 978-3-319-04117-9
eBook Packages: Computer ScienceComputer Science (R0)