Skip to main content

Task-Driven Image Retrieval Using Geographic Information

  • Conference paper
MultiMedia Modeling (MMM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8326))

Included in the following conference series:

  • 2032 Accesses

Abstract

When large-scale online geo-tagged images come into view, it is important to leverage geographic information for web image retrieval. In this paper, a geo-metadata based image retrieval system is proposed using both textual tags and visual features. This image retrieval system is especially useful for tourism related tasks such as tourism recommendation and tourism guide. First, the requested image retrieval task is classified into one of the three different types according to the retrieval purpose, and then it can be handled with specific method. Second, a WordNet hierarchy based semantic similarity is developed to measure the similarity between different cities. This semantic similarity is somehow consistent with the visual similarity. Finally, a high-level image representation method is proposed to narrow the semantic gap between the low-level visual features and high-level image concepts. The proposed algorithm is evaluated on an image set which is consisted of totally 177,158 images of 120 most popular cities all over the world collected from Flickr, and the experiments have provided very positive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  2. Fan, J., He, X., Zhou, N., Peng, J., Jain, R.: Quantitative characterization of semantic gaps for learning complexity estimation and inference model selection. IEEE Transactions on Multimedia 14(5), 1414–1428 (2012)

    Article  Google Scholar 

  3. Fan, J., Keim, D.A., Gao, Y., Luo, H., Li, Z.: Justclick: Personalized image recommendation via exploratory search from large-scale flickr images. IEEE Transactions on Circuits and Systems for Video Technology 19(2), 273–288 (2009)

    Article  Google Scholar 

  4. http://www.flickr.com

  5. Hays, J., Efros, A.A.: IM2GPS: estimating geographic information from a single image. In: CVPR, pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Liang, C.-K., Hsieh, Y.-T., Chuang, T.-J., Wang, Y., Weng, M.-F., Chuang, Y.-Y.: Learning landmarks by exploiting social media. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, Y.-P.P. (eds.) MMM 2010. LNCS, vol. 5916, pp. 207–217. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Cao, L., Luo, J., Gallagher, A., Jin, X., Han, J., Huang, T.S.: A world wide tourism recommendation system based on geotagged web photos. In: ICASSP, pp. 2274–2277. IEEE (2010)

    Google Scholar 

  8. Yang, Y., Gong, Z., et al.: Identifying points of interest by self-tuning clustering. In: SIGIR, pp. 883–892. ACM (2011)

    Google Scholar 

  9. Li, J., Qian, X., Tang, Y.Y., Yang, L., Liu, C.: GPS estimation from users’ photos. In: Li, S., El Saddik, A., Wang, M., Mei, T., Sebe, N., Yan, S., Hong, R., Gurrin, C. (eds.) MMM 2013, Part I. LNCS, vol. 7732, pp. 118–129. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Li, J., Qian, X., Tang, Y.Y., Yang, L., Mei, T.: GPS estimation for places of interest from social users uploaded photos. IEEE Transactions on Multimedia (2014)

    Google Scholar 

  11. Miller, G.: Wordnet: a lexical database for English. Communications of the ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  12. Fellbaum, C.: Wordnet. Theory and Applications of Ontology: Computer Applications, pp. 231–243 (2010)

    Google Scholar 

  13. Li, L.J., Su, H., Fei-Fei, L., Xing, E.P.: Object bank: A high-level image representation for scene classification & semantic feature sparsification. In: NIPS, pp. 1378–1386 (2010)

    Google Scholar 

  14. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR, pp. 951–958. IEEE (2009)

    Google Scholar 

  15. Torresani, L., Szummer, M., Fitzgibbon, A.: Efficient object category recognition using classemes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 776–789. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Kennedy, L.S., Naaman, M.: Generating diverse and representative image search results for landmarks. In: WWW, pp. 297–306. ACM (2008)

    Google Scholar 

  17. Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s photos. In: WWW, pp. 761–770. ACM (2009)

    Google Scholar 

  18. Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research 155, 23–36 (2006)

    Google Scholar 

  19. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  20. Simpson, T., Crowe, M.: Wordnet.net (2005), http://opensource.ebswift.com/WordNet.Net

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dong, P., Mei, K., Zhang, J., Lei, H., Fan, J. (2014). Task-Driven Image Retrieval Using Geographic Information. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8326. Springer, Cham. https://doi.org/10.1007/978-3-319-04117-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04117-9_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04116-2

  • Online ISBN: 978-3-319-04117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics