Abstract
We show that the construction of a digital sphere by circularly sweeping a digital semicircle (generatrix) around its diameter results in appearance of some holes (absentee voxels) in its spherical surface of revolution. This incompleteness calls for a proper characterization of the absentee voxels whose restoration in the surface of revolution can ensure the required completeness. In this paper, we present a characterization of the absentee voxels using certain techniques of digital geometry and show that their count varies quadratically with the radius of the semicircular generatrix. Next, we design an algorithm to fill up the absentee voxels so as to generate a spherical surface of revolution, which is complete and realistic from the viewpoint of visual perception. Test results have also been furnished to substantiate our theoretical findings. The proposed technique will find many potential applications in computer graphics and 3D imaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brimkov, V.E., Barneva, R.P., Brimkov, B., de Vieilleville, F.: Offset approach to defining 3D digital lines. In: Bebis, G., et al. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 678–687. Springer, Heidelberg (2008)
Feschet, F., Reveillès, J.-P.: A Generic Approach for n-Dimensional Digital Lines. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 29–40. Springer, Heidelberg (2006)
Kenmochi, Y., Buzer, L., Sugimoto, A., Shimizu, I.: Digital planar surface segmentation using local geometric patterns. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 322–333. Springer, Heidelberg (2008)
Woo, D.M., Han, S.S., Park, D.C., Nguyen, Q.D.: Extraction of 3D Line Segment Using Digital Elevation Data. In: Proceedings of the 2008 Congress on Image and Signal Processing, CISP 2008, vol. 2, pp. 734–738. IEEE Computer Society, Washington, DC (2008)
Chan, Y.T., Thomas, S.M.: Cramer-Rao lower bounds for estimation of a circular arc center and its radius. Graphical Models and Image Processing 57, 527–532 (1995)
Davies, E.R.: A hybrid sequential-parallel approach to accurate circle centre location. Pattern Recognition Letters 7, 279–290 (1988)
Doros, M.: On some properties of the generation of discrete circular arcs on a square grid. Computer Vision, Graphics, and Image Processing 28, 377–383 (1984)
Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Sys., Man & Cybern. 4, 394–396 (1974)
Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recognition Letters 25, 1231–1242 (2004)
Pal, S., Bhowmick, P.: Determining digital circularity using integer intervals. Journal of Mathematical Imaging and Vision 42, 1–24 (2012)
Thomas, S.M., Chan, Y.T.: A simple approach for the estimation of circular arc center and its radius. Computer Vision, Graphics, and Image Processing 45, 362–370 (1989)
Yuen, P.C., Feng, G.C.: A novel method for parameter estimation of digital arc. Pattern Recognition Letters 17, 929–938 (1996)
Nakamura, A., Aizawa, K.: Digital circles. Computer Vision, Graphics, and Image Processing 26, 242–255 (1984)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco (2004)
Klette, R., Rosenfeld, A.: Digital straightness: A review. Discrete Applied Mathematics 139, 197–230 (2004)
Mignosi, F.: On the number of factors of Sturmian words. Theoretical Computer Science 82, 71–84 (1991)
Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. Theoretical Computer Science 406, 24–30 (2008)
Heath-Brown, D.R.: Lattice points in the sphere. Number theory in progress, vol. II, pp. 883–892. Walter de Gruyter, Berlin (1999)
Chamizo, F., Cristóbal, E., Ubis, A.: Visible lattice points in the sphere. Journal of Number Theory 126, 200–211 (2007)
Chamizo, F., Cristobal, E.: The sphere problem and the L-functions. Acta Mathematica Hungarica 135, 97–115 (2012)
Fomenko, O.: Distribution of lattice points over the four-dimensional sphere. Journal of Mathematical Sciences 110, 3164–3170 (2002)
Magyar, A.: On the distribution of lattice points on spheres and level surfaces of polynomials. Journal of Number Theory 122, 69–83 (2007)
Ewell, J.A.: Counting lattice points on spheres. The Mathematical Intelligencer 22, 51–53 (2000)
Tsang, K.M.: Counting lattice points in the sphere. Bulletin of the London Mathematical Society 32, 679–688 (2000)
Maehara, H.: On a sphere that passes through n lattice points. European Journal of Combinatorics 31, 617–621 (2010)
Cappell, S.E., Shaneson, J.L.: Some Problems in Number Theory I: The Circle Problem (2007), http://arxiv.org/abs/math.NT/0702613
Honsberger, R.: Circles, Squares, and Lattice Points. Mathematical Gems I, 117–127 (1973)
Kühleitner, M.: On lattice points in rational ellipsoids: An omega estimate for the error term. Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg 70, 105–111 (2000)
Chamizo, F., Cristbal, E., Ubis, A.: Lattice points in rational ellipsoids. Journal of Mathematical Analysis and Applications 350, 283–289 (2009)
Chamizo, F.: Lattice points in bodies of revolution. Acta Arithmetica 85, 265–277 (1998)
Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Visualization and Computer Graphics 3, 75–86 (1997)
Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach with non-constant thickness. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.) Vision Geometry XIV, Electronic Imaging, San Jose (CA), USA. SPIE, vol. 6066, p. 60660C (2006)
Fiorio, C., Toutant, J.-L.: Arithmetic discrete hyperspheres and separatingness. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 425–436. Springer, Heidelberg (2006)
Montani, C., Scopigno, R.: Spheres-to-voxels conversion. In: Glassner, A.S. (ed.) Graphics Gems, pp. 327–334. Academic Press Professional, Inc., San Diego (1990)
Stelldinger, P.: Image Digitization and its Influence on Shape Properties in Finite Dimensions. IOS Press (2007)
Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics — Principles and Practice. Addison-Wesley, Reading (1993)
Bera, S., Bhowmick, P., Stelldinger, P., Bhattacharya, B.B.: On covering a digital disc with concentric circles in ℤ2. Theoretical Computer Science 506, 1–16 (2013)
Bhowmick, P., Bhattacharya, B.B.: Number theoretic interpretation and construction of a digital circle. Discrete Applied Mathematics 156, 2381–2399 (2008)
Kumar, G., Sharma, N., Bhowmick, P.: Wheel-throwing in digital space using number-theoretic approach. International Journal of Arts and Technology 4, 196–215 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bera, S., Bhowmick, P., Bhattacharya, B.B. (2014). A Digital-Geometric Algorithm for Generating a Complete Spherical Surface in ℤ3 . In: Gupta, P., Zaroliagis, C. (eds) Applied Algorithms. ICAA 2014. Lecture Notes in Computer Science, vol 8321. Springer, Cham. https://doi.org/10.1007/978-3-319-04126-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-04126-1_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04125-4
Online ISBN: 978-3-319-04126-1
eBook Packages: Computer ScienceComputer Science (R0)