Skip to main content

Multi-Country Mortality Analysis Using Self Organizing Maps

  • Conference paper
Recent Advances of Neural Network Models and Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 26))

  • 2159 Accesses

Abstract

In this paper we introduce the use of Self Organizing Maps (SOMs) in multidimensional mortality analysis. The rationale behind this contribution is that patterns of mortality in different areas of the world are becoming more and more related; a fast and intuitive method understanding the similarities among mortality experiences could therefore be of aid to improve the knowledge on this complex phenomenon. The results we have obtained highlight common features in the mortality experience of various countries, hence supporting the idea that SOM may be a very effective tool in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Khalaf-Allah, M.: Bayesian Stochastic Mortality Modelling for Two Populations. ASTIN Bull. 41(1), 29–59 (2011)

    MathSciNet  Google Scholar 

  2. Deboeck, G., Kohonen, T.: Visual Explorations in Finance: with Self-Organizing Maps. Springer Finance, New York (1998)

    Book  MATH  Google Scholar 

  3. Fiig Jarner, S., Masotty Kryger, E.: Modelling adult mortality in small populations: the Saint model. Pensions Institute Discussion Paper PI-0902 (2009)

    Google Scholar 

  4. Hatzopoulos, P., Haberman, S.: A parameterized approach to modelling and forecasting mortality. Insur.: Math. and Econ. 44(1), 103–123 (2009)

    MATH  MathSciNet  Google Scholar 

  5. Hatzopoulos, P., Haberman, S.: Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data. Insur.: Math. and Econ. 52, 320–337 (2013)

    MathSciNet  Google Scholar 

  6. Kaski, S., Kangas, J., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997. Neur. Comp. Surveys 1, 102–350 (1998)

    Google Scholar 

  7. Kohonen, T.: Self-Organizing Maps, 3rd extended edn. Springer, Berlin (2001)

    Google Scholar 

  8. Li, N., Lee, R.: Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. Demography 42(3), 575–594 (2005)

    Article  Google Scholar 

  9. Martn, B., Serrano Cinca, C.: Self Organizing Neural Networks for the Analysis and Representation of Data: some Financial Cases. Neu. Comp. & Appl. 1(2), 193–206 (1993)

    Article  Google Scholar 

  10. Montefiori, M., Resta, M.: A computational approach for the health care market. Health Care Man. Sc. 12(4), 344–350 (2009)

    Article  Google Scholar 

  11. Oja, M., Kaski, S., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 Addendum. Neur. Comp. Surveys 3, 1–156 (2003)

    Google Scholar 

  12. Polla, M., Honkela, T., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 2002-2005 Addendum. TKK Reports in Information and Computer Science, Helsinki University of Technology, Report TKK-ICS-R23 (2009)

    Google Scholar 

  13. Resta, M.: Early Warning Systems: an approach via Self Organizing Maps with applications to emergent markets. In: Proc. of the 2009 Conference on New Directions in Neural Networks: 18th Italian Workshop on Neural Networks, WIRN 2008, pp. 176–184. IOS Press, Amsterdam (2009)

    Google Scholar 

  14. Resta, M.: Assessing the efficiency of Health Care Providers: A SOM perspective. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 30–39. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Resta, M., Ravera, M.: A model for mortality forecasting based on Self Organizing Maps. In: Estevez, P.A., Principe, J.C., Zegers, P. (eds.) Advances in Self-Organizing Maps. AISC, vol. 198, pp. 335–343. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Tuljapurkar, S., Li, N., Boe, C.: A universal pattern of mortality decline in the G7 countries. Nature 40, 789–792 (2000)

    Article  Google Scholar 

  17. White, K.M.: Longevity Advances in High-income Countries, 1955-96. Pop. and Dev. Rev. 28, 59–76 (2002)

    Article  Google Scholar 

  18. Wilson, C.: On the Scale of Global Demographic Convergence 19502000. Pop. and Dev. Rev. 24, 593–600 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Piscopo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Piscopo, G., Resta, M. (2014). Multi-Country Mortality Analysis Using Self Organizing Maps. In: Bassis, S., Esposito, A., Morabito, F. (eds) Recent Advances of Neural Network Models and Applications. Smart Innovation, Systems and Technologies, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-04129-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04129-2_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04128-5

  • Online ISBN: 978-3-319-04129-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics