Skip to main content

Interval Linear Programming Techniques in Constraint Programming and Global Optimization

  • Chapter
Constraint Programming and Decision Making

Part of the book series: Studies in Computational Intelligence ((SCI,volume 539))

  • 1453 Accesses

Abstract

We consider a constraint programming problem described by a system of nonlinear equations and inequalities; the objective is to tightly enclose all solutions. First, we linearize the constraints to get an interval linear system of equations and inequalities. Then, we adapt techniques from interval linear programming to find a polyhedral relaxation to the solution set. The linearization depends on a selection of the relaxation center; we discuss various choices and give some recommendations. The overall procedure can be iterated and thus serves as a contractor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Althaus, E., Becker, B., Dumitriu, D., Kupferschmid, S.: Integration of an LP solver into interval constraint propagation. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 343–356. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Araya, I., Trombettoni, G., Neveu, B.: A contractor based on convex interval taylor. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 1–16. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Baharev, A., Achterberg, T., Rév, E.: Computation of an extractive distillation column with affine arithmetic. AIChE J. 55(7), 1695–1704 (2009)

    Article  Google Scholar 

  4. Beaumont, O.: Solving interval linear systems with linear programming techniques. Linear Algebra Appl. 281(1-3), 293–309 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, L., Miné, A., Wang, J., Cousot, P.: Interval polyhedra: An abstract domain to infer interval linear relationships. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 309–325. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Collavizza, H., Delobel, F., Rueher, M.: Comparing partial consistencies. Reliab. Comput. 5(3), 213–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear optimization problems with inexact data. Springer, New York (2006)

    MATH  Google Scholar 

  8. Gerlach, W.: Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der Koeffizientenmatrix. Math. Operationsforsch. Stat. Ser. Optimization 12, 41–43 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goualard, F., Jermann, C.: A reinforcement learning approach to interval constraint propagation. Constraints 13(1), 206–226 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Granvilliers, L.: On the combination of interval constraint solvers. Reliab. Comput. 7(6), 467–483 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hansen, E.R., Walster, G.W.: Global optimization using interval analysis, 2nd edn. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  12. Hladík, M.: Interval linear programming: A survey. In: Mann, Z.A. (ed.) Linear Programming - New Frontiers in Theory and Applications, ch. 2, pp. 85–120. Nova Science Publishers, New York (2012)

    Google Scholar 

  13. Hladík, M.: Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra Appl. 438(11), 4156–4165 (2013)

    Article  MathSciNet  Google Scholar 

  14. Jansson, C.: Rigorous lower and upper bounds in linear programming. SIAM J. Optim. 14(3), 914–935 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jaulin, L.: Reliable minimax parameter estimation. Reliab. Comput. 7(3), 231–246 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied interval analysis. With examples in parameter and state estimation, robust control and robotics. Springer, London (2001)

    MATH  Google Scholar 

  17. Kearfott, R.B.: Discussion and empirical comparisons of linear relaxations and alternate techniques in validated deterministic global optimization. Optim. Methods Softw. 21(5), 715–731 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lebbah, Y., Lhomme, O.: Accelerating filtering techniques for numeric CSPs. Artif. Intell. 139(1), 109–132 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lebbah, Y., Michel, C., Rueher, M.: An efficient and safe framework for solving optimization problems. J. Comput. Appl. Math. 199(2), 372–377 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.-P.: Efficient and safe global constraints for handling numerical constraint systems. SIAM J. Numer. Anal. 42(5), 2076–2097 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lin, Y., Stadtherr, M.A.: LP strategy for the interval-Newton method in deterministic global optimization. Ind. Eng. Chem. Res. 43(14), 3741–3749 (2004)

    Article  Google Scholar 

  22. Neumaier, A.: Interval methods for systems of equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear programming. Math. Program. 99(2), 283–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6, 405–409 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions. SIAM J. Control Optim. 48(7), 4377–4394 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval linearizations for global optimization. In: Burgard, W., Roth, D. (eds.) Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA. AAAI Press (2011)

    Google Scholar 

  27. Vu, X.-H., Sam-Haroud, D., Faltings, B.: Enhancing numerical constraint propagation using multiple inclusion representations. Ann. Math. Artif. Intell. 55(3-4), 295–354 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hladík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hladík, M., Horáček, J. (2014). Interval Linear Programming Techniques in Constraint Programming and Global Optimization. In: Ceberio, M., Kreinovich, V. (eds) Constraint Programming and Decision Making. Studies in Computational Intelligence, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-319-04280-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04280-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04279-4

  • Online ISBN: 978-3-319-04280-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics