Abstract
In this paper, we focus on small or medium-sized e-commerce portals. Due to high competition, users of these portals are not too loyal and e.g. refuse to register or provide any/enough explicit feedback. Furthermore, products such as tours, cars or furniture have very low average consumption rate preventing us from tracking unregistered user between two consecutive purchases. Recommending on such domains proves to be very challenging, yet interesting research task. For this task, we propose a model coupling various implicit feedbacks and object attributes in matrix factorization. We report on promising results of our initial off-line experiments on travel agency dataset. Our experiments corroborate benefits of using object attributes; however we are yet to decide about usefulness of some implicit feedback data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belluf, T., Xavier, L., Giglio, R.: Case study on the business value impact of personalized recommendations on a large online retailer. In: RecSys 2012, pp. 277–280. ACM (2012)
Forbes, P., Zhu, M.: Content-boosted matrix factorization for recommender systems: experiments with recipe recommendation. In: RecSys 2011, pp. 261–264. ACM (2011)
Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User Profiles for Personalized Information Access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web 2007. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)
Jawaheer, G., Szomszor, M., Kostkova, P.: Comparison of implicit and explicit feedback from an online music recommendation service. In: HetRec 2010, pp. 47–51. ACM (2010)
Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. SIGIR Forum 37, 18–28 (2003)
Konstan, J., Riedl, J.: Recommender systems: from algorithms to user experience. UMUAI 22, 101–123 (2012)
Koren, Y.: Collaborative filtering with temporal dynamics. In: ACM SIGKDD 2009, pp. 447–456. ACM (2009)
Koren, Y., Bell, R., Volinsky, C.: Matrix Factorization Techniques for Recommender Systems. Computer 42, 30–37 (2009)
Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing 7, 76–80 (2003)
Ostuni, V.C., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-N recommendations from implicit feedback leveraging linked open data. In: RecSys 2013, pp. 85–92. ACM (2013)
Peska, L., Vojtas, P.: Evaluating Various Implicit Factors in E-commerce. In: RUE (RecSys) 2012. CEUR, vol. 910, pp. 51–55.
Peska, L., Vojtas, P.: Negative Implicit feedback in E-commerce Recommender Systems. In: Proc. of WIMS 2013, pp. 45:1-45:4. ACM (2013)
Peska, L., Vojtas, P.: Enhancing Recommender System with Linked Open Data. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS (LNAI), vol. 8132, pp. 483–494. Springer, Heidelberg (2013)
Xia, C., Jiang, X., Liu, S., Luo, Z., Yu, Z.: Dynamic item-based recommendation algorithm with time decay. In: ICNC 2010, pp. 242–247. IEEE (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Peska, L., Vojtas, P. (2014). Recommending for Disloyal Customers with Low Consumption Rate. In: Geffert, V., Preneel, B., Rovan, B., Å tuller, J., Tjoa, A.M. (eds) SOFSEM 2014: Theory and Practice of Computer Science. SOFSEM 2014. Lecture Notes in Computer Science, vol 8327. Springer, Cham. https://doi.org/10.1007/978-3-319-04298-5_40
Download citation
DOI: https://doi.org/10.1007/978-3-319-04298-5_40
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04297-8
Online ISBN: 978-3-319-04298-5
eBook Packages: Computer ScienceComputer Science (R0)