Skip to main content

Minimum Activation Cost Node-Disjoint Paths in Graphs with Bounded Treewidth

  • Conference paper
SOFSEM 2014: Theory and Practice of Computer Science (SOFSEM 2014)

Abstract

In activation network problems we are given a directed or undirected graph G = (V,E) with a family {f uv : (u,v) ∈ E} of monotone non-decreasing activation functions from D 2 to {0,1}, where D is a constant-size subset of the non-negative real numbers, and the goal is to find activation values x v for all v ∈ V of minimum total cost ∑  v ∈ V x v such that the activated set of edges satisfies some connectivity requirements. We propose algorithms that optimally solve the minimum activation cost of k node-disjoint st-paths (st-MANDP) problem in O(tw ((5 + tw)|D|)2tw + 2|V|3) time and the minimum activation cost of node-disjoint paths (MANDP) problem for k disjoint terminal pairs (s 1,t 1),…,(s k ,t k ) in O(tw ((4 + 3tw)|D|)2tw + 2|V|) time for graphs with treewidth bounded by tw.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: Theory, Algorithms and Applications. Prentice Hall, New Jersey (1993)

    MATH  Google Scholar 

  2. Alqahtani, H.M., Erlebach, T.: Approximation Algorithms for Disjoint st-Paths with Minimum Activation Cost. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 1–12. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. In: ACM STOC 1993, pp. 226–234 (1993)

    Google Scholar 

  4. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoretical Computer Science 10(2), 111–121 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  6. Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization for connectivity problems. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 349–361. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Lando, Y., Nutov, Z.: On minimum power connectivity problems. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 87–98. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Nutov, Z.: Survivable network activation problems. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 594–605. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Nutov, Z.: Approximating Steiner networks with node-weights. SIAM J. Comput. 39(7), 3001–3022 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Panigrahi, D.: Survivable network design problems in wireless networks. In: 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1014–1027. SIAM (2011)

    Google Scholar 

  11. Robertson, N., Seymour, P.D.: Graph Minors XIII. The Disjoint Paths Problem. J. Comb. Theory, Ser. B 63, 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with bound tree-width. Technical Report 396, Dept. Mathematics, Technische Universität Berlin (1994)

    Google Scholar 

  13. Srinivas, A., Modiano, E.: Finding Minimum Energy Disjoint Paths in Wireless Ad-Hoc Networks. Wireless Networks 11(4), 401–417 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Alqahtani, H.M., Erlebach, T. (2014). Minimum Activation Cost Node-Disjoint Paths in Graphs with Bounded Treewidth. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds) SOFSEM 2014: Theory and Practice of Computer Science. SOFSEM 2014. Lecture Notes in Computer Science, vol 8327. Springer, Cham. https://doi.org/10.1007/978-3-319-04298-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04298-5_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04297-8

  • Online ISBN: 978-3-319-04298-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics