Abstract
In activation network problems we are given a directed or undirected graph G = (V,E) with a family {f uv : (u,v) ∈ E} of monotone non-decreasing activation functions from D 2 to {0,1}, where D is a constant-size subset of the non-negative real numbers, and the goal is to find activation values x v for all v ∈ V of minimum total cost ∑ v ∈ V x v such that the activated set of edges satisfies some connectivity requirements. We propose algorithms that optimally solve the minimum activation cost of k node-disjoint st-paths (st-MANDP) problem in O(tw ((5 + tw)|D|)2tw + 2|V|3) time and the minimum activation cost of node-disjoint paths (MANDP) problem for k disjoint terminal pairs (s 1,t 1),…,(s k ,t k ) in O(tw ((4 + 3tw)|D|)2tw + 2|V|) time for graphs with treewidth bounded by tw.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: Theory, Algorithms and Applications. Prentice Hall, New Jersey (1993)
Alqahtani, H.M., Erlebach, T.: Approximation Algorithms for Disjoint st-Paths with Minimum Activation Cost. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 1–12. Springer, Heidelberg (2013)
Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. In: ACM STOC 1993, pp. 226–234 (1993)
Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoretical Computer Science 10(2), 111–121 (1980)
Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)
Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization for connectivity problems. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 349–361. Springer, Heidelberg (2005)
Lando, Y., Nutov, Z.: On minimum power connectivity problems. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 87–98. Springer, Heidelberg (2007)
Nutov, Z.: Survivable network activation problems. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 594–605. Springer, Heidelberg (2012)
Nutov, Z.: Approximating Steiner networks with node-weights. SIAM J. Comput. 39(7), 3001–3022 (2010)
Panigrahi, D.: Survivable network design problems in wireless networks. In: 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1014–1027. SIAM (2011)
Robertson, N., Seymour, P.D.: Graph Minors XIII. The Disjoint Paths Problem. J. Comb. Theory, Ser. B 63, 65–110 (1995)
Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with bound tree-width. Technical Report 396, Dept. Mathematics, Technische Universität Berlin (1994)
Srinivas, A., Modiano, E.: Finding Minimum Energy Disjoint Paths in Wireless Ad-Hoc Networks. Wireless Networks 11(4), 401–417 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Alqahtani, H.M., Erlebach, T. (2014). Minimum Activation Cost Node-Disjoint Paths in Graphs with Bounded Treewidth. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds) SOFSEM 2014: Theory and Practice of Computer Science. SOFSEM 2014. Lecture Notes in Computer Science, vol 8327. Springer, Cham. https://doi.org/10.1007/978-3-319-04298-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-04298-5_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04297-8
Online ISBN: 978-3-319-04298-5
eBook Packages: Computer ScienceComputer Science (R0)