Abstract
A mixed graph has both directed and undirected edges. We study how to compute a crossing-free drawing of a planar embedded mixed graph, such that it is upward “as much as possible”. Roughly speaking, in an upward drawing of a mixed graph all edges are monotone in the vertical direction and directed edges flow monotonically from bottom to top according to their orientation. We study quasi-upward drawings of mixed graphs, that is, upward drawings where edges can break the vertical monotonicity in a finite number of edge points, called bends. We describe both efficient heuristics and exact methods for computing quasi-upward planar drawings of planar embedded mixed graphs with few bends, and we extensively compare them experimentally: the results show the effectiveness of our algorithms in many cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A.: Classification of planar upward embedding. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 415–426. Springer, Heidelberg (2011)
Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K.: The duals of upward planar graphs on cylinders. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 103–113. Springer, Heidelberg (2012)
Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer (2009)
Bertolazzi, P., Di Battista, G., Didimo, W.: Quasi-upward planarity. Algorithmica 32(3), 474–506 (2002)
Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 6(12), 476–497 (1994)
Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. on Computing 27, 132–169 (1998)
Binucci, C., Di Giacomo, E., Didimo, W., Rextin, A.: Switch-regular upward planar embeddings of directed trees. J. of Graph Algorithms and Applications 15(5), 587–629 (2011)
Binucci, C., Didimo, W.: Upward planarity testing of embedded mixed graphs. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 427–432. Springer, Heidelberg (2011)
Binucci, C., Didimo, W., Giordano, F.: Maximum upward planar subgraphs of embedded planar digraphs. Computational Geometry: Theory and Applications 41(3), 230–246 (2008)
Binucci, C., Didimo, W., Patrignani, M.: Upward and quasi-upward planarity testing of embedded mixed graphs. Technical report, RT-001-12, DIEI - University of Perugia (2012)
Boesch, F., Tindell, R.: Robbins’s theorem for mixed multigraphs. American Mathematical Monthly 87(9), 716–719 (1980)
Chan, H.: A parameterized algorithm for upward planarity testing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 157–168. Springer, Heidelberg (2004)
Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.-M.: Layer-free upward crossing minimization. ACM J. of Experimental Algorithmics 15 (2010)
Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.-M.: Upward planarization layout. J. of Graph Algorithms and Applications 15(1), 127–155 (2011)
Chimani, M., Zeranski, R.: Upward planarity testing via SAT. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 248–259. Springer, Heidelberg (2013)
Chimani, M., Zeranski, R.: Upward planarity testing: A computational study. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 13–24. Springer, Heidelberg (2013)
Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. J. of Graph Algorithms and Applications 16(3), 635–650 (2012)
Di Battista, G., Didimo, W.: Gdtoolkit. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Chapman and Hall/CRC (2013)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)
Didimo, W.: Upward planar drawings and switch-regularity heuristics. J. of Graph Algorithms and Applications 10(2), 259–285 (2006)
Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. on Discrete Mathematics 23(4), 1842–1899 (2009)
Didimo, W., Pizzonia, M.: Upward embeddings and orientations of undirected planar graphs. J. of Graph Algorithms and Applications 7(2), 221–241 (2003)
Eades, P., Lin, X., Smyth, W.F.: A fast effective heuristic for the feedback arc set problem. Information Processing Letters 47, 319–323 (1993)
Eiglsperger, M., Eppinger, F., Kaufmann, M.: An approach for mixed upward planarization. J. of Graph Algorithms and Applications 7(2), 203–220 (2003)
Farzad, B., Mahdian, M., Mahmoudian, E., Saberi, A., Sadri, B.: Forced orientation of graphs. Bulletin of Iranian Mathematical Society 32(1), 78–89 (2006)
Frati, F., Kaufmann, M., Pach, J., Tóth, C.D., Wood, D.R.: On the upward planarity of mixed plane graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 1–12. Springer, Heidelberg (2013)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co. (1979)
Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. on Computing 31(2), 601–625 (2001)
Healy, P., Lynch, K.: Fixed-parameter tractable algorithms for testing upward planarity. International Journal of Foundations of Computer Science 17(5), 1095–1114 (2006)
Hutton, M.D., Lubiw, A.: Upward planarity testing of single-source acyclic digraphs. SIAM J. on Computing 25(2), 291–311 (1996)
Lucchesi, C.L., Younger, D.H.: A minimax theorem for directed graphs. J. London Math. Soc. 17, 369–374 (1978)
Mchedlidze, T., Symvonis, A.: Unilateral orientation of mixed graphs. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 588–599. Springer, Heidelberg (2010)
Papakostas, A.: Upward planarity testing of outerplanar dags. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 298–306. Springer, Heidelberg (1995)
Stamm, H.: On feedback problems in planar digraphs. In: Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 79–89. Springer, Heidelberg (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Binucci, C., Didimo, W. (2014). Quasi-Upward Planar Drawings of Mixed Graphs with Few Bends: Heuristics and Exact Methods. In: Pal, S.P., Sadakane, K. (eds) Algorithms and Computation. WALCOM 2014. Lecture Notes in Computer Science, vol 8344. Springer, Cham. https://doi.org/10.1007/978-3-319-04657-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-04657-0_28
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04656-3
Online ISBN: 978-3-319-04657-0
eBook Packages: Computer ScienceComputer Science (R0)