Abstract
We propose efficient algorithms and formulas that improve the performance of side-channel protected scalar multiplication exploiting the Gallant-Lambert-Vanstone (CRYPTO 2001) and Galbraith-Lin-Scott (EUROCRYPT 2009) methods. Firstly, by adapting Feng et al.’s recoding to the GLV setting, we derive new regular algorithms for variable-base scalar multiplication that offer protection against simple side-channel and timing attacks. Secondly, we propose an efficient technique that interleaves ARM-based and NEON-based multiprecision operations over an extension field, as typically found on GLS curves and pairing computations, to improve performance on modern ARM processors. Finally, we showcase the efficiency of the proposed techniques by implementing a state-of-the-art GLV-GLS curve in twisted Edwards form defined over \(\mathbb{F}_{p^2}\), which supports a four dimensional decomposition of the scalar and runs in constant time, i.e., it is fully protected against timing attacks. For instance, using a precomputed table of only 512 bytes, we compute a variable-base scalar multiplication in 92,000 cycles on an Intel Ivy Bridge processor and in 244,000 cycles on an ARM Cortex-A15 processor. Our benchmark results and the proposed techniques contribute to the improvement of the state-of-the-art performance of elliptic curve computations. Most notably, our techniques allow us to reduce the cost of adding protection against timing attacks in the GLV-based variable-base scalar multiplication computation to below 10%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aranha, D.F., Karabina, K., Longa, P., Gebotys, C., López, J.: Faster explicit formulas for computing pairings over ordinary curves. In: EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)
Bernstein, D.: Cache-timing attacks on AES (2005), http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008)
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 124–142. Springer, Heidelberg (2011)
Bernstein, D., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic Systems, http://bench.cr.yp.to/results-dh.html (accessed on December 12, 2013)
Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012)
Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 194–210. Springer, Heidelberg (2013)
Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-performance scalar multiplication using 8-dimensional GLV/GLS decomposition. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 331–348. Springer, Heidelberg (2013)
Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Mangard, S., Standaert, F.-X. (eds.) Proceedings of the 12th USENIX Security Symposium. LNCS, vol. 6225, pp. 80–94. Springer (2003)
Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves (extended version). Cryptology ePrint Archive, Report 2013/158 (2013), http://eprint.iacr.org/2013/158
Feng, M., Zhu, B.B., Xu, M., Li, S.: Efficient comb elliptic curve multiplication methods resistant to power analysis. Cryptology ePrint Archive, Report 2005/222 (2005), http://eprint.iacr.org/2005/222
Feng, M., Zhu, B.B., Zhao, C., Li, S.: Signed MSB-set comb method for elliptic curve point multiplication. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006. LNCS, vol. 3903, pp. 13–24. Springer, Heidelberg (2006)
Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. J. Cryptology 24(3), 446–469 (2011)
Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009)
Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)
Thomé, E., Gaudry, P.: The mpFq library and implementing curve-based key exchanges. In: SPEED 2007, pp. 49–64 (2007)
Guillevic, A., Ionica, S.: Four dimensional GLV via the Weil restriction. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 79–96. Springer, Heidelberg (2013)
Hamburg, M.: Fast and compact elliptic-curve cryptography. In: Cryptology ePrint Archive, Report 2012/309 (2012), http://eprint.iacr.org/2012/309
Hankerson, D., Karabina, K., Menezes, A.: Analyzing the Galbraith-Lin-Scott point multiplication method for elliptic curves over binary fields. IEEE Trans. Computers 58(10), 1411–1420 (2009)
Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography. Springer (2004)
Hedabou, M., Pinel, P., Bénéteau, L.: Countermeasures for preventing comb method against SCA attacks. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 85–96. Springer, Heidelberg (2005)
Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revisited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer, Heidelberg (2008)
Hu, Z., Longa, P., Xu, M.: Implementing 4-dimensional GLV method on GLS elliptic curves with j-invariant 0. Designs, Codes and Cryptography 63(3), 331–343 (2012), http://eprint.iacr.org/2011/315
Joye, M., Tunstall, M.: Exponent recoding and regular exponentiation algorithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349. Springer, Heidelberg (2009)
Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)
Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)
ARM Limited. ARM Architecture Reference Manual: ARMv7-A and ARMv7-R edition (2012)
Longa, P., Gebotys, C.: Efficient techniques for high-speed elliptic curve cryptography. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 80–94. Springer, Heidelberg (2010)
Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 718–739. Springer, Heidelberg (2012)
Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. Journal of Cryptology (to appear, 2013)
Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)
Okeya, K., Takagi, T.: The width-w NAF method provides small memory and fast elliptic curve scalars multiplications against side-channel attacks. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 328–342. Springer, Heidelberg (2003)
Oliveira, T., López, J., Aranha, D.F., Rodríguez-Henríquez, F.: Lambda coordinates for binary elliptic curves. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 311–330. Springer, Heidelberg (2013)
Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)
Sánchez, A.H., Rodríguez-Henríquez, F.: NEON implementation of an attribute-based encryption scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg (2013)
Smith, B.: Families of fast elliptic curves from ℚ-curves. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 61–78. Springer, Heidelberg (2013)
Weber, D., Denny, T.: The solution of McCurley’s discrete log challenge. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 458–471. Springer, Heidelberg (1998)
Yanik, T., Savaş, E., Koç, Ç.K.: Incomplete reduction in modular arithmetic. IEE Proc. of Computers and Digital Techniques 149(2), 46–52 (2002)
Yen, S.-M., Joye, M.: Checking before output not be enough against fault- based cryptanalysis. IEEE Trans. Computers 49(9), 967–970 (2000)
Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: A countermeasure against one physical cryptanalysis may benefit another attack. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 414–427. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Faz-Hernández, A., Longa, P., Sánchez, A.H. (2014). Efficient and Secure Algorithms for GLV-Based Scalar Multiplication and Their Implementation on GLV-GLS Curves. In: Benaloh, J. (eds) Topics in Cryptology – CT-RSA 2014. CT-RSA 2014. Lecture Notes in Computer Science, vol 8366. Springer, Cham. https://doi.org/10.1007/978-3-319-04852-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-04852-9_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04851-2
Online ISBN: 978-3-319-04852-9
eBook Packages: Computer ScienceComputer Science (R0)