Skip to main content

Practical Dual-Receiver Encryption

Soundness, Complete Non-malleability, and Applications

  • Conference paper
Book cover Topics in Cryptology – CT-RSA 2014 (CT-RSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8366))

Included in the following conference series:

Abstract

We reformalize and recast dual-receiver encryption (DRE) proposed in CCS ’04, a public-key encryption (PKE) scheme for encrypting to two independent recipients in one shot. We start by defining the crucial soundness property for DRE, which ensures that two recipients will get the same decryption result. While conceptually simple, DRE with soundness turns out to be a powerful primitive for various goals for PKE, such as complete non-malleability (CNM) and plaintext-awareness (PA). We then construct practical DRE schemes without random oracles under the Bilinear Decisional Diffie-Hellman assumption, while prior approaches rely on random oracles or inefficient non-interactive zero-knowledge proofs. Finally, we investigate further applications or extensions of DRE, including DRE with CNM, combined use of DRE and PKE, strengthening two types of PKE schemes with plaintext equality test, off-the-record messaging with a stronger notion of deniability, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baek, J., Safavi-Naini, R., Susilo, W.: On the Integration of Public Key Data Encryption and Public Key Encryption with Keyword Search. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 217–232. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bellare, M., Boldyreva, A., Micali, S.: Public-Key Encryption in a Multi-user Setting: Security Proofs and Improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why not to use PGP. In: WPES, pp. 77–84 (2004)

    Google Scholar 

  5. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-Based Techniques. In: ACM Conference on Computer and Communications Security, pp. 320–329 (2005)

    Google Scholar 

  6. Camenisch, J.L., Michels, M.: Separability and Efficiency for Generic Group Signature Schemes (Extended Abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Chow, S.S.M., Franklin, M., Zhang, H.: Practical Dual-Receiver Encryption: Soundness, Complete Non-Malleability, and Applications. Cryptology ePrint report 2013/858 (2013)

    Google Scholar 

  8. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting System. In: IEEE Symposium on Security and Privacy, pp. 354–368 (2008)

    Google Scholar 

  9. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM J. Comput. 33(1), 167–226 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Damgård, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Damgård, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-Key Encryption with Non-interactive Opening. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust Non-interactive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Diament, T., Lee, H.K., Keromytis, A.D., Yung, M.: The Dual Receiver Cryptosystem and its Applications. In: ACM Conference on Computer and Communications Security, pp. 330–343 (2004)

    Google Scholar 

  14. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and On-Line Deniability of Authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Fischlin, M.: Completely non-malleable schemes. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 779–790. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Groth, J., Sahai, A.: Efficient Noninteractive Proof Systems for Bilinear Groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Herzog, J.C., Liskov, M., Micali, S.: Plaintext Awareness via Key Registration. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Jakobsson, M., Juels, A.: Mix and Match: Secure Function Evaluation via Ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Libert, B., Yung, M.: Efficient Completely Non-malleable Public Key Encryption. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 127–139. Springer, Heidelberg (2010)

    Google Scholar 

  24. Lu, Y., Zhang, R., Lin, D.: Stronger Security Model for Public-Key Encryption with Equality Test. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 65–82. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In: STOC, pp. 427–437 (1990)

    Google Scholar 

  26. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-Security Asymmetric Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–175. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  27. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In: STOC, pp. 187–196 (2008)

    Google Scholar 

  29. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)

    Google Scholar 

  30. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In: FOCS, pp. 543–553 (1999)

    Google Scholar 

  31. Smith, A., Youn, Y.: An Efficient Construction of Dual-Receiver Encryption (2008) (unpublished manuscript)

    Google Scholar 

  32. Ventre, C., Visconti, I.: Completely Non-malleable Encryption Revisited. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 65–84. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Wegman, M.N., Carter, L.: New Hash Functions and Their Use in Authentication and Set Equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic Public Key Encryption with Equality Test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  35. Zhang, R., Hanaoka, G., Imai, H.: A Generic Construction of Useful Client Puzzles. In: ASIACCS, pp. 70–79 (2009)

    Google Scholar 

  36. Zhang, R., Imai, H.: Generic Combination of Public Key Encryption with Keyword Search and Public Key Encryption. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 159–174. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  37. Zhou, L., Marsh, M.A., Schneider, F.B., Redz, A.: Distributed Blinding for Distributed ElGamal Re-Encryption. In: ICDCS, pp. 815–824 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chow, S.S.M., Franklin, M., Zhang, H. (2014). Practical Dual-Receiver Encryption. In: Benaloh, J. (eds) Topics in Cryptology – CT-RSA 2014. CT-RSA 2014. Lecture Notes in Computer Science, vol 8366. Springer, Cham. https://doi.org/10.1007/978-3-319-04852-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04852-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04851-2

  • Online ISBN: 978-3-319-04852-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics