Skip to main content

Fault-Tolerant Non-interference

  • Conference paper
Engineering Secure Software and Systems (ESSoS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8364))

Included in the following conference series:

Abstract

This paper is about ensuring security in unreliable systems. We study systems which are subject to transient faults – soft errors that cause stored values to be corrupted. The classic problem of fault tolerance is to modify a system so that it works despite a limited number of faults. We introduce a novel variant of this problem. Instead of demanding that the system works despite faults, we simply require that it remains secure: wrong answers may be given but secrets will not be revealed. We develop a software-based technique to achieve this fault-tolerant non-interference property. The method is defined on a simple assembly language, and guarantees security for any assembly program provided as input. The security property is defined on top of a formal model that encompasses both the fault-prone machine and the faulty environment. A precise characterization of the class of programs for which the method guarantees transparency is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The zap project, http://sip.cs.princeton.edu/projects/zap/ (accessed: February 20, 2013)

  2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Proceedings of the 12th ACM Conference on Computer and Communications Security, CCS 2005, pp. 340–353. ACM, New York (2005), http://doi.acm.org/10.1145/1102120.1102165

    Chapter  Google Scholar 

  3. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on rsa with crt: Concrete results and practical countermeasures. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A., Ngair, T.: Breaking public key cryptosystems on tamper resistant devices in the presence of transient faults. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Barthe, G., Crespo, J.M., Devriese, D., Piessens, F., Rivas, E.: Secure multi-execution through static program transformation. In: Giese, H., Rosu, G. (eds.) FORTE/FMOODS 2012. LNCS, vol. 7273, pp. 186–202. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Baumann, R.: Radiation-induced soft errors in advanced semiconductor technologies. IEEE Transactions on Device and Materials Reliability 5(3), 305–316 (2005)

    Article  MathSciNet  Google Scholar 

  7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. Journal of Cryptology 14, 101–119 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults. In: Desmedt, Y.G. (ed.) Advances in Cryptology - CRYPTO 1994. LNCS, vol. 839, pp. 425–438. Springer, Heidelberg (1994)

    Google Scholar 

  9. Capizzi, R., Longo, A., Venkatakrishnan, V.N., Sistla, A.P.: Preventing information leaks through shadow executions. In: Proceedings of the 2008 Annual Computer Security Applications Conference, ACSAC 2008. IEEE Computer Society (2008)

    Google Scholar 

  10. Chang, J., Reis, G., August, D.: Automatic instruction-level software-only recovery. In: DSN 2006, pp. 83–92 (2006)

    Google Scholar 

  11. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and transient faults. Des. Codes Cryptography 36(1), 33–43 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cristiá, M., Mata, P.: Runtime enforcement of noninterference by duplicating processes and their memories. In: WSEGI 2009, Argentina. 38 JAIIO (2009)

    Google Scholar 

  13. Del Tedesco, F., Russo, A., Sands, D.: Fault tolerant non-interference (extended version) (2013), http://www.cse.chalmers.se/~tedesco/papers/essos14.pdf

  14. Del Tedesco, F., Russo, A., Sands, D.: A theory of fault tolerance noninterference (preliminary) (2013)

    Google Scholar 

  15. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Proc. of the 2010 IEEE Symposium on Security and Privacy, SP 2010. IEEE Computer Society (2010)

    Google Scholar 

  16. Florio, V.D., Blondia, C.: A survey of linguistic structures for application-level fault tolerance. ACM Comput. Surv. 40(2) (2008)

    Google Scholar 

  17. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine. In: SP 2003, IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  18. Gray, J.W., Probabilistic, I.: interference. In: Proceedings of the 1990 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 170–179 (1990)

    Google Scholar 

  19. Harrison, W.L., Procter, A., Allwein, G.: The confinement problem in the presence of faults. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 182–197. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Kim, C., Quisquater, J.J.: Fault attacks for crt based rsa: New attacks, new results, and new countermeasures. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 215–228. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446 (2009), http://dx.doi.org/10.1007/s10817-009-9155-4

    Article  MATH  MathSciNet  Google Scholar 

  22. McLean, J.: Security models and information flow. In: Proc. IEEE Symposium on Security and Privacy, pp. 180–187. IEEE Computer Society Press (1990)

    Google Scholar 

  23. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system f to typed assembly language. ACM Trans. Program. Lang. Syst. 21(3), 527–568 (1999)

    Article  Google Scholar 

  24. Perry, F., Mackey, L., Reis, G.A., Ligatti, J., August, D.I., Walker, D.: Fault-tolerant typed assembly language. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 42–53. ACM, New York (2007)

    Google Scholar 

  25. Perry, F., Fisher, K.: Reasoning about control flow in the presence of transient faults. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 332–346. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Rushby, J.: Partitioning for safety and security: Requirements, mechanisms, and assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research Center (June 1999); also to be issued by the FAA

    Google Scholar 

  27. Russo, A., Hughes, J., Naumann, D.A., Sabelfeld, A.: Closing internal timing channels by transformation. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 120–135. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed programs. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 376–394. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In: Proceedings of the 13th IEEE Workshop on Computer Security Foundations, CSFW 2000, p. 200. IEEE Computer Society, Washington, DC (2000)

    Google Scholar 

  30. Skarin, D., Barbosa, R., Karlsson, J.: Goofi-2: A tool for experimental dependability assessment. In: Proceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems and Networks (2010)

    Google Scholar 

  31. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault isolation. In: Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, SOSP 1993, pp. 203–216. ACM, New York (1993), http://doi.acm.org/10.1145/168619.168635

    Chapter  Google Scholar 

  32. Wang, N.J., Quek, J., Rafacz, T.M., Patel, S.J.: Characterizing the effects of transient faults on a high-performance processor pipeline. In: International Conference on Dependable Systems and Networks, DSN 2004 (2004)

    Google Scholar 

  33. Weber, D.G.: Formal specification of fault-tolerance and its relation to computer security. In: Proceedings of the 5th International Workshop on Software Specification and Design, IWSSD 1989, pp. 273–277. ACM, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Del Tedesco, F., Russo, A., Sands, D. (2014). Fault-Tolerant Non-interference. In: Jürjens, J., Piessens, F., Bielova, N. (eds) Engineering Secure Software and Systems. ESSoS 2014. Lecture Notes in Computer Science, vol 8364. Springer, Cham. https://doi.org/10.1007/978-3-319-04897-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04897-0_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04896-3

  • Online ISBN: 978-3-319-04897-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics