Abstract
This paper presents the notion of Present-Future form (PF form) for linear time \(\mu \)-calculus (\(\nu \)TL) formulas consisting of the present and future parts: the present part is the conjunction of atomic propositions or their negations while the future part is a closed \(\nu \)TL formula under the next operator. We show every closed \(\nu \)TL formula can be rewritten into its corresponding PF form. Finally, based on PF form, the idea of constructing a graph that describing models of a \(\nu \)TL formula is discussed.
This research is supported by the NSFC Grant Nos. 61133001, 61272118, 61272117, 61202038, 91218301, 61322202, 61373043, and National Program on Key Basic Research Project (973 Program) Grant No. 2010CB328102.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoret. Comput. Sci. 27(3), 333–354 (1983)
Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: Conference Record of the 13th Annual ACM Symposium on Principles of Programming Languages, pp. 173–183. ACM (1986)
Vardi, M.Y.: A temporal fixpoint calculus. In: Conference Record of the 15th Annual ACM Symposium on Principles of Programming Languages, pp. 250–259. ACM (1988)
Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1), 72–99 (1983)
Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the propositional mu-calculus. Inf. Comput. 81(3), 249–264 (1989)
Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of \(\mu \)-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)
Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)
Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 62–74. Springer, Heidelberg (1989)
Stirling, C., Walker, D.: CCS, liveness, and local model checking in the linear time mu-calculus. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 166–178. Springer, Heidelberg (1990)
Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. Theoret. Comput. Sci. 89(1), 161–177 (1991)
Kaivola, R.: A simple decision method for the linear time mu-calculus. In: Proceedings of the International Workshop on Structures in Concurrency Theory, pp. 190–204. Springer (1995)
Bradfield, J., Esparza, J., Mader, A.: An effective tableau system for the linear time \(\mu \)-calculus. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 98–109. Springer, Heidelberg (1996)
Duan, Z.: An extended interval temporal logic and a framing technique for temporal logic programming. Ph.D. thesis, University of Newcastle Upon Tyne (1996)
Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2006)
Duan, Z., Tian, C.: Decidability of propositional projection temporal logic with infinite models. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 521–532. Springer, Heidelberg (2007)
Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection temporal logic with infinite models. Acta Inf. 45(1), 43–78 (2008)
Tian, C., Duan, Z.: Complexity of propositional projection temporal logic with star. Math. Struct. Comput. Sci. 19(1), 73–100 (2009)
Duan, Z., Tian, C.: An improved decision procedure for propositional projection temporal logic. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 90–105. Springer, Heidelberg (2010)
Stirling, C.: Modal and temporal logics. LFCS, Department of Computer Science, University of Edinburgh (1991)
Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional \(\mu \)-calculus. Inf. Comput. 157(1), 142–182 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Liu, Y., Duan, Z., Tian, C., Liu, B. (2014). Present-Future Form of Linear Time \(\mu \)-Calculus. In: Liu, S., Duan, Z. (eds) Structured Object-Oriented Formal Language and Method. SOFL+MSVL 2013. Lecture Notes in Computer Science(), vol 8332. Springer, Cham. https://doi.org/10.1007/978-3-319-04915-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-04915-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04914-4
Online ISBN: 978-3-319-04915-1
eBook Packages: Computer ScienceComputer Science (R0)