Skip to main content

Present-Future Form of Linear Time \(\mu \)-Calculus

  • Conference paper
  • First Online:
Structured Object-Oriented Formal Language and Method (SOFL+MSVL 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8332))

  • 769 Accesses

Abstract

This paper presents the notion of Present-Future form (PF form) for linear time \(\mu \)-calculus (\(\nu \)TL) formulas consisting of the present and future parts: the present part is the conjunction of atomic propositions or their negations while the future part is a closed \(\nu \)TL formula under the next operator. We show every closed \(\nu \)TL formula can be rewritten into its corresponding PF form. Finally, based on PF form, the idea of constructing a graph that describing models of a \(\nu \)TL formula is discussed.

This research is supported by the NSFC Grant Nos. 61133001, 61272118, 61272117, 61202038, 91218301, 61322202, 61373043, and National Program on Key Basic Research Project (973 Program) Grant No. 2010CB328102.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoret. Comput. Sci. 27(3), 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: Conference Record of the 13th Annual ACM Symposium on Principles of Programming Languages, pp. 173–183. ACM (1986)

    Google Scholar 

  3. Vardi, M.Y.: A temporal fixpoint calculus. In: Conference Record of the 15th Annual ACM Symposium on Principles of Programming Languages, pp. 250–259. ACM (1988)

    Google Scholar 

  4. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1), 72–99 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the propositional mu-calculus. Inf. Comput. 81(3), 249–264 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of \(\mu \)-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)

    Google Scholar 

  7. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 62–74. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  9. Stirling, C., Walker, D.: CCS, liveness, and local model checking in the linear time mu-calculus. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 166–178. Springer, Heidelberg (1990)

    Google Scholar 

  10. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. Theoret. Comput. Sci. 89(1), 161–177 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kaivola, R.: A simple decision method for the linear time mu-calculus. In: Proceedings of the International Workshop on Structures in Concurrency Theory, pp. 190–204. Springer (1995)

    Google Scholar 

  12. Bradfield, J., Esparza, J., Mader, A.: An effective tableau system for the linear time \(\mu \)-calculus. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 98–109. Springer, Heidelberg (1996)

    Google Scholar 

  13. Duan, Z.: An extended interval temporal logic and a framing technique for temporal logic programming. Ph.D. thesis, University of Newcastle Upon Tyne (1996)

    Google Scholar 

  14. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2006)

    Google Scholar 

  15. Duan, Z., Tian, C.: Decidability of propositional projection temporal logic with infinite models. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 521–532. Springer, Heidelberg (2007)

    Google Scholar 

  16. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection temporal logic with infinite models. Acta Inf. 45(1), 43–78 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tian, C., Duan, Z.: Complexity of propositional projection temporal logic with star. Math. Struct. Comput. Sci. 19(1), 73–100 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Duan, Z., Tian, C.: An improved decision procedure for propositional projection temporal logic. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 90–105. Springer, Heidelberg (2010)

    Google Scholar 

  19. Stirling, C.: Modal and temporal logics. LFCS, Department of Computer Science, University of Edinburgh (1991)

    Google Scholar 

  20. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional \(\mu \)-calculus. Inf. Comput. 157(1), 142–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, Y., Duan, Z., Tian, C., Liu, B. (2014). Present-Future Form of Linear Time \(\mu \)-Calculus. In: Liu, S., Duan, Z. (eds) Structured Object-Oriented Formal Language and Method. SOFL+MSVL 2013. Lecture Notes in Computer Science(), vol 8332. Springer, Cham. https://doi.org/10.1007/978-3-319-04915-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04915-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04914-4

  • Online ISBN: 978-3-319-04915-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics