
Networks of Polarized Evolutionary Processors
Are Computationally Complete

Fernando Arroyo , Sandra Gómez Canaval , Victor Mitrana
and Stefan Popescu

Abstract. In this paper, we consider the computational power of a new
variant of networks of evolutionary processors which seems to be more
suitable for a software and hardware implementation. Each processor as
well as the data navigating throughout the network are now considered
to be polarized. While the polarization of every processor is predefined,
the data polarization is dynamically computed by means of a valuation
mapping. Consequently, the protocol of communication is naturally de-
fined by means of this polarization. We show that tag systems can be
simulated by these networks with a constant number of nodes, while Tur-
ing machines can be simulated, in a time-emcient way, by these networks
with a number of nodes depending linearly on the tape alphabet of the
Turing machine.

1 Introduction

Networks of evolutionary processors (NEP) form a class of highly parallel and
distributed computing models inspired and abstracted from the biological evolu-
tion. Informally, a network of evolutionary processor consists of a virtual (com­
plete) graph in which each node hosts a very simple processor called evolutionary
processor. By an evolutionary processor we mean a mathematical construction
which is able to perform very simple operations inspired by the point mutat ions
in DNA sequences (insertion, deletion or substi tution of a single base pair). By
an informal parallelism with the natural process of evolution, each node may be
viewed as a cell having genetic information encoded in DNA sequences which
may evolve by local evolutionary events, tha t is point mutations. Each node pro­
cessor, which is specialized just for one of these evolutionary operations, acts on

the local data and then local data becomes a mobile agent which can navigate
in the network following a given protocol. Only that data which is able to pass
a filtering process can be communicated. This filtering process may require to
satisfy some conditions imposed by the sending processor, by the receiving pro-
cessor or by both of them. All the nodes send simultaneously their data and the
receiving nodes handle also simultaneously all the arriving messages, according
to some strategies.

It is worth mentioning that NEPs resemble a pretty common architecture for
parallel and distributed symbolic processing, related to the Connection Machine
[7] which was defined as a network of microprocessors in the shape of a hypercube.
Each microprocessor was very simple, processing one bit per unit time. Also it
is closely related to the tissue-like P systems [13] in the membrane computing
área [19].

NEPs as language generating devices and problem solvers have been consid­
ered in [2] and [14], respectively. They have been further investigated in a series
of subsequent works. NEPs as accepting devices and problem solvers have been
considered in [12]; later on, a characterization of the complexity classes NP,
P, and PSPACE based on accepting NEPs has been reported in [10]. Univer­
sal NEPs and some descriptional complexity problems are discussed in [9]. The
reader interested in a survey of the main results regarding NEPs is referred to
[11].

Software implementations of NEPs have been reported, see, e.g., [3,4,16], most
of them in JAVA. They encountered difiiculties especially in the implementation
of filters. The main idea to simúlate the non-deterministic behavior of NEPs has
been to consider a safe-thread model of processors, that is to have each rule and
filter in a thread, respectively. Clearly the threads corresponding to the filters
are much more complicated than those associated with the evolutionary rules.
Configuration changes in a NEP are accomplished either by a communication
step or by an evolutionary step, but these two steps may be realized in any or-
der. This suggests that evolution or communication may be chosen depending
on the thread model of processor [4]. The input and output filters are imple-
mented as threads extending the Runnable interface. Therefore a processor is
the parent of a set of threads, which use all objects from that processor in a
mutual exclusión región. When a processor starts to run, it starts in a cascade
way the rule threads and filter threads. As one can see, the filters associated
with processors, especially if there are both input and output filters, seem to
be hardly implementable. Consequently, it would be of interest to replace the
communication based on filters among processors by another protocol. A first
attempt was to move filters from each node to the edges between the nodes, see,
e.g., [5]. Although this variant seems to be theoretically simpler, the attempts
towards an implementation have encountered similar difiiculties due to the fact
that the filters associated with edges are similar to those associated with nodes.

Work [1] considers a new variant of NEP with the aim of proposing a new
type of filtering process and discusses the potential of this variant for solving
hard computational problems. The main and completely new feature of this

variant is the valuation mapping which assigns to each string an integer valué,
depending on the valúes assigned to its symbols. Actually, we are not interested in
computing the exact valué of a string, but just the sign of this valué. By means
of this valuation, one may metaphorically say that the strings are electrically
polarized. Thus, if the nodes are polarized as well, the strings migration from
one node to another through the channel between the two cells seems to be more
natural and easier to be implemented.

We consider here a slightly more general variant of networks of polarized evo-
lutionary processors (NPEP) and investígate its computational power. Although
the communication protocol based on the polarized processors and the valuation
function seems to offer less control, the new variant is still computationally com­
plete. We show that NPEP with a constant number of processors, namely 15, are
computationally complete by devising a method for simulating 2-Tag Systems.
As a 2-tag system can efficiently simúlate any deterministic Turing machine but
not nondeterministic ones, we propose a simulation of nondeterministic Turing
machines with NPEP which maintains the working time of the Turing machine.
That is, every language accepted by a one-tape nondeterministic Turing machine
in time f(n) can be accepted by an NPEP in time 0(f(n)). Unlike the simulation
of a 2-tag system, the size of a NPEP simulating an arbitrary Turing machine
depends linearly on the number of tape symbols of the Turing machine.

2 Preliminaries

We start by summarizing the notions used throughout this work. An alphabet
is a finite and nonempty set of symbols. The cardinality of a finite set A is
written card(A). Any finite sequence of symbols from an alphabet V is called
word over V. The set of all words over V is denoted by V* and the empty word is
denoted by e. The length of a word x is denoted by |x| while alph(x) denotes the
minimal alphabet W such that x G W*. Fürthermore, \x\a denotes the number
of occurrences of the symbol a i n i .

A homomorphism from the monoid V* into the monoid (group) of additive
integers Z is called valuation of V* in Z.

We consider here the following definition of 2-tag systems that appears in
[20]. This type of tag-system, namely the type 7i 2-tag-systems that appear in
Section 8 of [20], is slightly different but equivalent to those from [18,15]. A 2-
tag system T = (V, /x) consists of a finite alphabet of symbols V, containing a
special haltíng symbol H (denoted in [20] with STOP) and a finite set of rules
¡JL : V\{H} —> V+ such that |/x(x)| > 2 or /x(x) = H. Fürthermore, /x(x) = H for
just one x G V\{H}. A halting word for the system T is a word that contains the
halting symbol H or whose length is less than 2. The transformation íy (called
the tag operation) is defined on the set of non-halting words as follows: if x is
the leftmost symbol of a non-halting word w, then ty(w) is the result of deleting
the leftmost 2 symbols of w and then appending the word /x(x) at the right
end of the obtained word. A computation by a 2-tag system as above is a finite
sequence of words produced by iterating the transformation t, starting with an

initially given non-halting word w and halting when a halting word is produced.
A computation is not considered to exist unless a halting word is produced in
finitely-many iterations. Note tha t in [20] the halting words are defined a little
bit different, as the words start ing with the only symbol y such tha t /x(y) = H,
or the words whose length is less than 2. However, our way of defining halting
words is equivalent to tha t in [20], in the sense tha t there exists a bijection
between the valid computations obtained in each of these two cases. Indeed, if
we consider the stopping condition from [20], and obtain in a valid computation
a word start ing with y, thus a halting word, it is enough to apply once more íy
on this word to obtain a word containing H, a halting word according to our
definition, and transform the initial valid computat ion in a valid computation
according to our definition. Conversely, if a word containing H, a halting word
for our definition, is obtained in a valid computation, then the halting symbol
could not have appeared in tha t word in other way than by applying íy on a
word start ing with y, a halting word for the definition from [20], therefore we
have a corresponding valid computation, by tha t definition. As shown in [20],
such restricted 2-tag systems are universal.

A nondeterministic Turing machine is a construct M = (Q, V, U, S, qo, B, F),
where Q is a finite set of states, V is the input alphabet, U is the tape alphabet,
V C U, qo is the initial state, B G U\V is the "blank" symbol, F C Q is the set of
final states, and S is the transition mapping, S : (Q\F) x U —> 2^X<-U¡^B^X^R'L^.
In this paper, we assume without loss of generality tha t any Turing machine we
consider has a semi-infinite tape (bounded to the left) and makes no stat ionary
moves; the computation of such a machine is described in [21,6,17]. An input
word is accepted if and only if after a finite number of moves the Turing machine
enters a final s tate. The language accepted by the Turing machine is a set of all
accepted words. We say a Turing machine decides a language L if it accepts L
and moreover halts on every input.

We say tha t a rule a - í - 6 , with a, b G V U {e} and ab ^ e is a substitution rule
if both a and b are not e; it is a deletíon rule if a ^ e and b = e; it is an ínsertíon
rule if a = e and b ^ e. The set of all substitution, deletion, and insertion rules
over an alphabet V are denoted by Suby, Dely, and Insy, respectively. Given
a rule a as above and a word w G V*, we define the following actíons of a on w:

„ . , . í \ubv : Bu, v G V* (w = uav)\,
— If a = a ->• b G Subv, then a(w) = < l

r -, ^ .
I l w) ' otherwise.

— lí a = a —>e€ Dely, then

ar(w) = i {W : W = W a } ' al(w) = i ^V : W = aV^
1 Í W } J otherwise v ' \ {w}, otherwise

— If <7 = £ — U G Insy, then ar' (w) = {iva}, al(w) = {aw}.

Note tha t a G {/, r } expresses the way of applying a deletion or insertion rule
to a word, namely in the left (a = l), or in the right (a = r) end of the word,
respectively. It is worth mentioning tha t the action mode of a substi tution rule
applied to a word w: it returns the set of all words tha t may be obtained from
w depending on the position in w where the rule was actually applied.

For every evolutionary rule a, action a G {/,'*}, (a i s missing when a is a
substi tution rule) and L C V*, we define the a-actíon of a on L by o-a(L) =

I I aa(w). Given a finite set of rules M, we define the a-action of M on the
w£L

w o r d w a n d t h e l a n g u a g e L b y M a (w) = (J aa(w) and Ma(L) = [j Ma{w),

respectively.

Def in i t ion 1. A polarized evolutionary processor over V is a pair (M, a, 7r),
where:

• M is a set of substitution, deletion or insertion rules over the alphabet V. For-
mally: (M C Subv) or (M C Delv) or (M C Insv). The set M represents
the set of evolutionary rules of the processor. As one can see, a processor is
"specialized" in one evolutionary operation, only.

• a gives the action mode of the rules of the node. If M C Suby, then a is
missing.

• 7r G {—, + , 0} is the polarization of the node (negatively or positively charged,
or neutral, respectively).

We denote the set of evolutionary processors over V by EPy . Clearly, the evolu­
tionary processor described here is a mathematical concept similar to tha t of an
evolutionary algorithm, both being inspired from the Darwinian evolution. As
compared to evolutionary algorithms, the rewriting operations we have consid-
ered here might be interpreted as mutat ions and the filtering process described
above might be viewed as a selection process. Recombination is missing but it
was asserted tha t evolutionary and functional relationships between genes can
be captured by taking only local mutat ions into consideration [22].

Def in i t ion 2. A network of polarized evolutionary processors (NPEP for short)
is a 7-tuple r = (V, U, G, 1Z, ¡p, In, Out), where:

o V and U are the input and network alphabet, respectively, V C U.
o G = (XQ, EG) is an undirected graph without loops with the set of vértices

XQ and the set of edges EQ. G is called the underlying graph of the network.
o TZ : XQ —> EPu is a mapping which associates with each node x G XQ the

polarized evolutionary processor lZ(x) = (Mx,ax,nx).
o ¡p is a valuation of U* in Z.
o In, Out, G XQ are the input and the output node of r, respectively.

We say tha t card(Xo) is the size of r. A configuration of a N P E P r as above
is a mapping C : XQ —> 2V which associates a set of words with every node
of the graph. A configuration may be understood as the sets of words which
are present in any node at a given moment. Given a word w e V*, the initial
configuration of r on w is defined by CQ (x/) = {w} and CQ'(X) = 0 for all
x G XG \ { x / } .

A configuration can change either by an evolutionary step or by a communi-
cation step. When changing by an evolutionary step, each component C(x) of

the configuration C is changed in accordance with the set of evolutionary rules
Mx associated with the node x. Formally, we say that the configuration C is
obtained in one evolutionary step from the configuration C, written as C => C,
iff

C'(x) = M£*(C(x)) for all x G XG.

When changing by a communication step, each node processor x G XQ sends
out copies of all its words but keeping a local copy of the words having the same
polarity to that of x only, to all the node processors connected to x and receives
a copy of each word sent by any node processor connected with x providing
that it has the same polarity as that of x. Note that, for simplicity reasons, we
prefer to consider that a word migrate to a node with the same polarity and not
an opposed one. Formally, we say that the configuration C is obtained in one
communication step from configuration C, written as C h C", iff

C'(x) = (C(x) \ {w G C(x) | sign{<p{w)) ± nx}) U

| J ({w G C(y) | sign(<f(w)) = nx}),
{x,y}£Ea

for all x G XQ. Here sign(m) is the sign function which returns +, 0, —, provided
that m is a positive integer, is 0, or is a negative integer, respectively. Note that
all words with a different polarity than that of x are expelled. Fürther, each
expelled word from a node x that cannot enter any node connected to x (no
such node has the same polarity as the word has) is lost.

Let r be a NPEP, the computation of r on the input word w G V* is a
sequence of configurations C¿" , Cj1" , C^ , • • •, where C¿ is the initial con­
figuration of r on w, C;;¿ ==> C S i an<^ C*2í+i ^ ^24+2' f°r ^ i > 0. Note
that the configurations are changed by alternative steps. By the previous defini-
tions, each configuration C¡w is uniquely determined by the configuration C¡™[.
Otherwise stated, each computation in a NPEP is deterministic.

A computation as above halts, if there exists a configuration in which the set
of words existing in the output node Out is non-empty. Given a NPEP r and
an input word w, we say that r accepts w if the computation of r on w halts.

Let f b e a NPEP with the input alphabet V; the time complexity of the finite
computation C^x), c[x\ C¡x), . . . C^] of T on x G V* is denoted by Timer(x)
and equals m. The time complexity of r is the function from N to N,

Timer(n) = sup{Timer(x) \ \x\ = n}.

3 2-Tag Systems Can Be Simulated by N P E P of Constant
Size

In the following we show how a 2-tag system can be simulated by an NPEP. We
make use of a similar strategy to that developed in [8].

Theorem 1. For every 2-tag system F = (V, ¡F) there exists a NPEP r of size
15 such that F(r) = {w \ F halts on w}.

Proof. Let V = {a i , 0 2 , . . . , an, an+i} be the alphabet of the tag system T with
an+i = H and V = V \ {H}. Let S be the set of all sufiixes of the words in
{/x(a) I a G V}. We consider the N P E P T = (V', U, G, TI, ip, 1,15) with the 15
nodes 1, 2, . . . , 15. The working alphabet of the network is defined as follows:

U = V U {a0, a0} U {a , a', a ,a° | a G V̂ } U

{[x], (x), <C x » , (x), <€. x » , (a0x), <C a0x » , (a0x), <C aoíc > | x G 5 } .

The processors placed in the 15 nodes of the network are defined in Table 1.

Table 1. The description of the nodes of r

Node M a 7T Adjacency list

1 {a ->• [/x(a)] | a e y ' } 0 {2,14}
2 { a - > o ° | a e y ' } + {1,3}
3 {e -> a'o} r - {2,4,12}
4 {a'fc -Wfc ' | 0 < k< n + 1} 0 {3,5,9}
5 {[akx] -> (ak-ix) \l<k<n+l,xe S}U

{{cikx} —y (ak-ix) \ l < k < n + l, x e S}
+ {4,6}

6 {(x) - K a : > | x e S} - {5,7}
7 {a'k-i^a'k\l<k<n + l} 0 {6,8}
8 {a'k -+a'k | 1 < k <n + l} + R9}
9 { < x > ^ (ai) | a; e S} - {4,8,10}
10 \{a0x) —> < a0x > | a; e 6'} 0 {9,11}
11 {a'fc ->a fc | 1 < fc<n + l} + {10,12,15}
12 { < a0afca; > -> [afca;J | l < f e < n + l , a ; e £'}U 0 {3,11,13} 12

{ < a 0 > - • [aoj}
0 {3,11,13}

13 {[a0] - • e} Z - {12,14}
14 {a° - • £ } Z - {1,13}
15 0 - {11}

The construction of r is complete as soon as we define the valuation mapping
<p. It is defined as follows:

tpia-k) = 0 ,1 < k < n, cp(H) -10,

<p([x\) = <p{{x)) = <p{{a0x)) = l , x G S,

<p{a°) = -2,a&V',

ip(a'k) = í,0<k<n+í,

ip{a'l) = 2 , 0 < £ ; < n + l ,

ip{(x)) = ip({a0x)) = -í,x G S,

<p(^. x >) = ^(<C a0x ») = 0 , I G S ,

<p(c¿~k) = 3, 1 < k<n+l,

y (< x >) = ^>(< a0x >) = 2,xeS.

We show tha t r accepts a word w tha t does not contain H if an only if T
eventually halts on w. Let w = aby,a,b G V,y G V* be a word tha t does not

contain H such that T eventually halts on w. We show how w can be accepted
by r. At the beginning oí the computation w is íound in node 1, where the first
symbol a can be replaced with [/x(a)]. From our íurther explanations, it will turn
out that ií the symbol a replaced by [/x(a)] in node 1 is not the leítmost one, then
the computation on this word is blocked. The valuation oí the new word, [/x(a)]6y,
has a positive valué such that the word enters node 2 which is positively charged.
In node 2, we can rewrite b as 6o, getting the new word [[i(a)]b°y. Again, later
we infer that ií another symbol is replaced, the computation will be blocked. The
word [i^(a)]b°y can only enter node 3 where the symbol a'0 is inserted to its right
end obtaining [[i(a)]b°ya'0. This word can enter node 4 and 12. Note that the
copy entering node 12 remains there forever. Therefore, we continué our analysis
in node 4. In this node, a'0 is replaced by a'¿ which change the polarization oí
the word from neutral to positive which makes it to migrate to node 5.

We now assume that /x(a) = a^x for some 1 < A; < n + 1. In node 5, \a^x\
is replaced by (cik-ix) and the new word which is negatively charged enters
node 6. After its first symbol (cik-ix) is substituted with <C afc-ix ^>, the word
has a nuil valuation and enters node 7. The word is successively transformed in
<C afc-ix ~^> b°ya[(in node 7), <C afc-ix ^> b°ya[(in node 8), and {ak-ix)b°ya'1

(in node 9). If k > 1, this string first returns to node 4, resulting in (a,k-ix)b°ya'{,
and then enters node 5, resulting in {ak-2x)b°ya'{. This process continúes by
iteratively passing the sequence of nodes 4, 5, 6, 7, 8, 9 until a string of the form
{aox)b°ya'k is obtained in node 9. Now the current word enters 10 and 11, where
it is rewritten into <C a^x ^b°ya'k and <C a^x ^b°yaj., respectively. li k = n+í,
then the word enters the output node 15 and the computation halts. Otherwise,
the current string can only enter node 12, where its first symbol <C a^x ~^> is
replaced either by [oj-x'], provided that x = a,jx', or by [ao], if x = e. In the
former case, the whole process described above resumes from the node 3. In the
latter, we actually reached a word of the form [ao]b°y^(a). This word can enter
node 13, where the symbol [ao] is deleted, provided that it is the leftmost symbol.
A copy of this word remains in 13 forever, but another copy enters 14, where the
symbol 6o is deleted, provided that it is the leftmost symbol. One can see now
that if the symbols substituted in the nodes 1 and 2 were not the right ones, the
computation will get stuck. Note that the word obtained in node 14 is exactly
y/j,(a), which means that we have correctly simulated the step a —> 4>{a) in the
tag system. Now, this word enters 1 where the simulation of the next step in T
starts.

By these explanations, we infer that w G L(r) if and only if T will eventually
halt on w. D

4 Arbitrary Turing Machines Can Be Simulated by
NPEP

Although 2-tag systems efiiciently simúlate deterministic Turing machines, via
cyclic tag systems (see, e.g., [23]), the previous result does not allow us to say

much about the NPEP accepting in a computationally efficient way all recur-
sively enumerable languages. We now discuss how recursively enumerable lan-
guages can be efficiently (from the time complexity point of view) accepted by
NPEP by simulating arbitrary Turing machines.

Theorem 2. For any recursively enumerable language I, accepted in 0(f(n))
by a Turing machine with tape alphabet U, there exists an NPEP of size ÍOcard(U)
accepting L in 0(f(n)) steps.

Proof. Let M = (Q, V, U, S, q0, B, F) be a Turing machine with U n Q = 0, and
U = {ai, 0,2, • • •, cin+i}, cbn+í = B. We start the construction of the NPEP
r accepting the language accepted by M with the definition of its working
alphabet:

W = UUQU{q\qeQ}U{a\aeU}U {a', a", a, a \ a G U \ {B}} U

{[q,a,D]\qeQ,aeU\ {B}, D G {I, R}}.

We now can define the valuation mapping ¡p as follows:

y(a) = 0, a G U, 95(«) = 2, a G U,
cp(a') = -í,aeU\ {B}, <p(a") = 2,aeU\ {B},
<p(q) = -l,q(=Q\F <p{q) = l,q&F,
<p(a,i) = -pi, 1 <i <n, <p(ai) = pul <i < n,
y((s, a¿, L)) = -pi, s G Q,í <i < n, y>((s, a¿, R)) = p^ s G Q,í < i < n,
<p([s,a,D]) = -2, <p(q)=0,qeQ,

seQ,a£ U\{B},De{L,R}

th
Here pi denotes the i odd prime number. The processors placed in the nodes
of the network are defined in Table 2.

We now analyze the computation of r on an input word, say w, which is
placed in the input node In. Here the B symbol is added to its right-hand end,
yielding wB which has a neutral polarization. Therefore, a copy of this word
remains in In, while another copy migrates to InsSt (Insert State). It will turn
out, by our further explanations, that if w is accepted by a computation of M
that uses the minimal number t of auxiliary cells (cells that initially contain B),
then every word wB3 , with j < t, that enters InsSt will be eventually blocked
in a node. We assume that wB3 , for some j > t, enters InsSt. It is transformed
into wB^qo which is negatively charged, such that each node IdS(a,i) (Identify
Symbol), 1 < i < n + 1, receives one of its copies. Inductively, we may assume
that the current word is yBkqx, for some k > 0, which signifies that the Turing
Machine M is in state q and has on its tape the word xy, with its head positioned
on the first symbol of y. Assume that y = a¿z, for some 1 < i < n+ 1; note that
the copy of yBkqx that enters IdS(ak), k ^ i, will be further blocked in Del.

Let us follow the copy of a,izBkqx that enters IdS(a,i). After an occurrence of
ai, not necessarily the leftmost one, is replaced by H¡, the word arrives in ChT(ai)
(Choose Transition). Here a symbol [s,am,D], such that (s,am,D) G S(q,a,i), is
adjoined which makes the new word to have a nuil valué through the valuation

mapping ip. This word enters Del, where a barred symbol is removed provided
that it is the leftmost one. We can see now that, if the occurrence of a¿ substituted
in the node IdS(a,i) was not the leftmost one, the word remains blocked in Del.
Therefore, our current word becomes zBk[s,am, D]x, 1 < m < n, D G {L,R}.
As it is negatively charged, it enters DetLR (Determine Left-Right). In this node,
[s, am, D] is replaced by (s, am, D) and the new word is zBk(s, am, D)x.

Table 2. The definition of the nodes of r

Node M a IX Adjacency list

In {e^B} r 0 {InsSt}
InsSt {e -> qo} r 0 {In}U

{IdS(a) \aeU}
IdS(a),
aeU

{a —s- a} — {InsSt, RestS, ChT(a)}

ChT(a),
aeU

{q->[s,b,D]\
(s,b,D) eS(q,a)}

+ {Del,IdS(a)}

Del {a —y e \ a e U} l 0 {DetLRjU
{ChT(a) \aeU}

DetLR {[s,b,D] - • (s,b,D) |
(s,b,D) eS(q,a),

for some q € Q\ L,a € U}

{Del}U
{/nsLi(a) | ae U \ {B}U
{InsRi(a) | ae U \{B}U

InsRiia),
aeU\{B}

{e^a} r + {DetLR, CSR(a)}

CSR(a)
aeU\{B}

{{s,a,R)^s\ seQ} 0 {InsRi (a), InsR2 (a)}

InsR2Ía)
aeU\{B}

{a —y a} — {CSR(a), RestS}

InsLiia),
aeU\{B}

{e^a} l — {DetLR, CSL(a)}

CSL(a)
aeU\{B}

\(s,a,L) -> s | s e Q} 0 {InsLi (a), InsL-2 (a)}

InsL2Ía)
aeU\{B}

{a —y a} + {CSL(a),Move}

Move { a - > o ' | a e U\{B}} 0 {InsL2(a) | ae U \ {B}}U
Ins(a) \aeU\{B}

Ins(a)
aeU\{B}

{e -+ a"} l — {Move,Del(a)}

Del (a)
aeU\{B}

{a' -> e}U r + {Ins(a),FL}

LL {a" -^a\ae U \ {B}} + {RestSjU
{Del(a) | ae U \ {B}}

RestS {s ^ s \ s e Q} 0 {FL, Out}U
{InsR2(a) \ae U \ {B}}U

{Ids{á) | a e U}U
Out 0 + {RestS}

The valué of this word is either negative, if D = L, or positive, if D = R. We
first consider the case D = R; each node InsRi(a), a G U\{B}, receives acopy of

the word zBk(s, am, R)x. If a copy arrivesin InsRi(a), a ^ am, then it can never
be transformed into a word with a nuil valué. After a number of evolutionary
steps, each of them inserting a a at the end, the word gets a negatively valué and
migrates back to DetLR, where it remains forever. The copy of zBk(s, am, R)x
tha t enters InsRi(am), is modified into zBk(s, am, R)xa^n. As it has a nuil valué,
it enters CSR(am) (Change State from the Right), where it becomes zBk~sxá^n.
The word zBk~sxa¡n is negatively charged and migrates to InsR2(am), where
wtam is substi tuted with am. Now, the word enters RestS (Restore State), where
the word becomes zBksxam, henee we have correctly simulated a move of M to
the right.

If D = L, then by means of the nodes InsLi(am), CSL(am), and InsL2(am),
the symbol am is inserted in the beginning of the word. Then, by means of the
nodes Move, Ins(b), Del(b), and FL, the symbol b ^ B is rotated from the end
of the word to its beginning. After this rotation, the word enters RestS, where
it becomes bamzBksx\, provided tha t x = x\b. In conclusión, we have correctly
simulated a move of M to the left.

In order to simúlate another move, the word enters IdS(a), a G U, and the
whole process discussed above resumes. Note tha t if the state s in a word existing
in RestS is a final state, then the word enters Out and the computation halts.

Now, the simulation proof is complete. From Table 2, it is easy to see tha t
the size of r is exactly 10card(U). D

An analysis of the proof, reveáis tha t each move of M is simulated by r in
a constant number of steps. On the other hand, if M accepts in 0(f(n)) time,
then the number of necessary steps in the beginning of any computation of r
on a word of length n is at most 0(f(n)). Consequently, Timep € 0(f(n)).

We finish this work with two open problems tha t natural ly arise:

1. Is the size proved in Theorem 1 optimal?
2. Can arbi trary Turing machines be simulated by N P E P of constant size? In

the affirmative, is such a simulation still time-efficient?

References

1. Alarcón, P., Arroyo, F., Mitrana, V.: Networks of polarized evolutionary proces-
sors as problem solvers. In: Advances in Knowledge-Based and Intelligent Informa­
tion and Engineering Systems. Frontiers in Artificial Intelligence and Applications,
pp. 807-815. IOS Press (2012)

2. Castellanos, J., Martín-Vide, C , Mitrana, V., Sempere, J.M.: Networks of evolu­
tionary processors. Acta Inf. 39, 517-529 (2003)

3. Díaz, M.A., de Mingo, L.F., Gómez, N.: Implementation of massive parallel
networks of evolutionary processors (MPNEP): 3-colorability problem. In: Krasno-
gor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) NICSO 2007. SCI, vol. 129,
pp. 399-408. Springer, Heidelberg (2007)

4. Díaz, M.A., de Mingo, L.F., Gómez, N.: Networks of evolutionary processors: Java
Implementation of a threaded processor. International Journal of Information The-
ories & Applications 15, 37-43 (2008)

5. Drágoi, C , Manea, F., Mitrana, V.: Accepting networks of evolutionary processors
with filtered connections. J. UCS 13, 1598-1614 (2007)

6. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.
Trans. Amer. Math. Soc. 117, 533-546 (1965)

7. Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1979)
8. Loos, R., Manea, F., Mitrana, V.: Small universal accepting hybrid networks of

evolutionary processors. Acta Inf. 47, 133-146 (2010)
9. Manea, F., Martín-Vide, C , Mitrana, V.: On the size complexity of universal ac­

cepting hybrid networks of evolutionary processors. Mathematical Structures in
Computer Science 17, 753-771 (2007)

10. Manea, F., Margenstern, M., Mitrana, V., Pérez-Jiménez, M.J.: A new character-
ization of NP, P, and PSPACE with accepting hybrid networks of evolutionary
processors. Theory Comput. Syst. 46, 174-192 (2010)

11. Manea, F., Martín-Vide, C , Mitrana, V.: Accepting networks of evolutionary word
and picture processors: A survey. In: Scientific Applications of Language Methods,
Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguis-
tics and Language Theory, vol. 2, pp. 523-560. World Scientific (2010)

12. Margenstern, M., Mitrana, V., Pérez-Jiménez, M.J.: Accepting Hybrid Networks
of Evolutionary Processors. In: Ferretti, C , Mauri, G., Zandron, C. (eds.) DNA
2004. LNCS, vol. 3384, pp. 235-246. Springer, Heidelberg (2005)

13. Martín-Vide, C , Pazos, J., Páun, G., Rodríguez-Patón, A.: A new class of symbolic
abstract neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON
2002. LNCS, vol. 2387, pp. 290-299. Springer, Heidelberg (2002)

14. Martín-Vide, C , Mitrana, V., Pérez-Jiménez, M.J., Sancho-Caparrini, F.: Hybrid
networks of evolutionary processors. In: Cantú-Paz, E., et al. (eds.) GECCO 2003.
LNCS, vol. 2723, pp. 401-412. Springer, Heidelberg (2003)

15. Minsky, M.L.: Size and structure of universal Turing machines using tag systems.
In: Recursive Function Theory, Symp. in Puré Mathematics, vol. 5, pp. 229-238
(1962)

16. Navarrete, C.B., Echeanda, M., Anguiano, E., Ortega, A., Rojas, J.M.: Paral-
lel simulation of NEPs on clusters. In: Proc. IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology - WI-IAT,
pp. 171-174. IEEE Computer Society (2011)

17. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
18. Post, E.L.: Formal reductions of the general combinatorial decisión problem. Amer.

J. Math. 65, 197-215 (1943)
19. Páun, G.: Membrane computing. An introduction. Springer, Berlin (2002)
20. Rogozhin, Y.: Small universal Turing machines. Theoret. Comput. Sci. 168,

215-240 (1996)
21. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I-III.

Springer, Berlin (1997)
22. Sankoff, D., et al.: Gene order comparisons for phylogenetic inference:evolution of

the mitochondrial genome. Proceedings of the National Academy of Sciences of the
United States of America 89, 6575-6579 (1992)

23. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal
Turing machines. In: 47th Annual IEEE Symposium on Foundations of Computer
Science FOCS 2006, pp. 439-448 (2006)

