
ar
X

iv
:1

40
1.

14
75

v1
 [

cs
.L

O
]

 7
 J

an
 2

01
4

Belief Revision in

Structured Probabilistic Argumentation

Paulo Shakarian1, Gerardo I. Simari2, and Marcelo A. Falappa3

1 Department of Electrical Engineering and Computer Science
U.S. Military Academy, West Point, NY, USA

paulo@shakarian.net
2 Department of Computer Science, University of Oxford, United Kingdom

gerardo.simari@cs.ox.ac.uk
3 Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur, Bah́ıa Blanca, Argentina
mfalappa@cs.uns.edu.ar

Abstract. In real-world applications, knowledge bases consisting of all
the information at hand for a specific domain, along with the current
state of affairs, are bound to contain contradictory data coming from
different sources, as well as data with varying degrees of uncertainty
attached. Likewise, an important aspect of the effort associated with
maintaining knowledge bases is deciding what information is no longer
useful; pieces of information (such as intelligence reports) may be out-
dated, may come from sources that have recently been discovered to be
of low quality, or abundant evidence may be available that contradicts
them. In this paper, we propose a probabilistic structured argumentation
framework that arises from the extension of Presumptive Defeasible Logic
Programming (PreDeLP) with probabilistic models, and argue that this
formalism is capable of addressing the basic issues of handling contradic-
tory and uncertain data. Then, to address the last issue, we focus on the
study of non-prioritized belief revision operations over probabilistic Pre-
DeLP programs. We propose a set of rationality postulates – based on
well-known ones developed for classical knowledge bases – that charac-
terize how such operations should behave, and study a class of operators
along with theoretical relationships with the proposed postulates, includ-
ing a representation theorem stating the equivalence between this class
and the class of operators characterized by the postulates.

1 Introduction and Related Work

Decision-support systems that are part of virtually any kind of real-world ap-
plication must be part of a framework that is rich enough to deal with several
basic problems: (i) handling contradictory information; (ii) answering abduc-
tive queries; (iii) managing uncertainty; and (iv) updating beliefs. Presumptions
come into play as key components of answers to abductive queries, and must be
maintained as elements of the knowledge base; therefore, whenever candidate an-
swers to these queries are evaluated, the (in)consistency of the knowledge base

http://arxiv.org/abs/1401.1475v1

together with the presumptions being made needs to be addressed via belief
revision operations.

In this paper, we begin by proposing a framework that addresses items (i)–
(iii) by extending Presumptive DeLP [1] (PreDeLP, for short) with probabilistic
models in order to model uncertainty in the application domain; the resulting
framework is a general-purpose probabilistic argumentation language that we
will refer to as Probabilistic PreDeLP(P-PreDeLP, for short).

In the second part of this paper, we address the problem of updating beliefs –
item (iv) above – in P-PreDeLP knowledge bases, focusing on the study of non-
prioritized belief revision operations. We propose a set of rationality postulates
characterizing how such operations should behave – these postulates are based
on the well-known postulates proposed in [2] for non-prioritized belief revision in
classical knowledge bases. We then study a class of operators and their theoretical
relationships with the proposed postulates, concluding with a representation
theorem.

Related Work. Belief revision studies changes to knowledge bases as a response
to epistemic inputs. Traditionally, such knowledge bases can be either belief sets
(sets of formulas closed under consequence) [3, 4] or belief bases [5, 2] (which are
not closed); since our end goal is to apply the results we obtain to real-world
domains, here we focus on belief bases. In particular, as motivated by require-
ments (i)–(iv) above, our knowledge bases consist of logical formulas over which
we apply argumentation-based reasoning and to which we couple a probabilis-
tic model. The connection between belief revision and argumentation was first
studied in [6]; since then, the work that is most closely related to our approach
is the development of the explanation-based operators of [7].

The study of argumentation systems together with probabilistic reasoning
has recently received a lot attention, though a significant part has been in the
combination between the two has been in the form of probabilistic abstract ar-
gumentation [8–11]. There have, however, been several approaches that combine
structured argumentation with models for reasoning under uncertainty; the first
of such approaches to be proposed was [12], and several others followed, such
as the possibilistic approach of [13], and the probabilistic logic-based approach
of [14]. The main difference between these works and our own is that here we
adopt a bipartite knowledge base, where one part models the knowledge that is
not inherently probabilistic – uncertain knowledge is modeled separately, thus
allowing a clear separation of interests between the two kinds of models. This
approach is based on a similar one developed for ontological languages in the
Semantic Web (see [15], and references within).

Finally, to the best of our knowledge, this is the first paper in which the com-
bination of structured argumentation, probabilistic models, and belief revision
has been addressed in conjunction.

Probabilistic Model (EM) Analytical Model (AM)

“Malware X was compiled on a system “Malware X was compiled on a system in
using the English language.” English-speaking country Y.”

“County Y and country Z are “Country Y has a motive to launch a
currently at war.” cyber-attack against country Z

“Malware W and malware X were created “Malware W and malware X are related.
in a similar coding style.”
Table 1. Examples of the kind of information that could be represented in the two
different models in a cyber-security application domain.

2 Preliminaries

The Probabilistic PreDeLP (P-PreDeLP, for short) framework is composed of
two separate models of the world. The first is called the environmental model
(referred to as “EM”), and is used to describe the probabilistic knowledge that
we have about the domain. The second one is called the analytical model (referred
to as “AM”), and is used to analyze competing hypotheses that can account for
a given phenomenon – what we will generally call queries. The AM is composed
of a classical (that is, non-probabilistic) PreDeLP program in order to allow for
contradictory information, giving the system the capability to model competing
explanations for a given query.

Two Kinds of Uncertainty. In general, the EM contains knowledge such as
evidence, uncertain facts, or knowledge about agents and systems. The AM, on
the other hand, contains ideas that a user may conclude based on the informa-
tion in the EM. Table 1 gives some examples of the types of information that
could appear in each of the two models in a cyber-security application. Note that
a knowledge engineer (or automated system) could assign a probability to state-
ments in the EM column, whereas statements in the AM column can be either
true or false depending on a certain combination (or several possible combina-
tions) of statements from the EM. There are thus two kinds of uncertainty that
need to be modeled: probabilistic uncertainty and uncertainty arising from de-
feasible knowledge. As we will see, our model allows both kinds of uncertainty to
coexist, and also allows for the combination of the two since defeasible rules and
presumptions (that is, defeasible facts) can also be annotated with probabilistic
events.

In the rest of this section, we formally describe these two models, as well as
how knowledge in the AM can be annotated with information from the EM –
these annotations specify the conditions under which the various statements in
the AM can potentially be true.

Basic Language. We assume sets of variable and constant symbols, denoted
with V and C, respectively. In the rest of this paper, we will use capital letters
to represent variables (e.g., X,Y, Z), while lowercase letters represent constants.
The next component of the language is a set of n-ary predicate symbols; the
EM and AM use separate sets of predicate symbols, denoted with PEM,PAM,

respectively – the two models can, however, share variables and constants. As
usual, a term is composed of either a variable or constant. Given terms t1, ..., tn
and n-ary predicate symbol p, p(t1, ..., tn) is called an atom; if t1, ..., tn are con-
stants, then the atom is said to be ground. The sets of all ground atoms for EM
and AM are denoted with GEM and GAM, respectively.

Given set of ground atoms, a world is any subset of atoms – those that be-
long to the set are said to be true in the world, while those that do not are
false. Therefore, there are 2|GEM| possible worlds in the EM and 2|GAM| worlds
in the AM. These sets are denoted with WEM and WAM, respectively. In or-
der to avoid worlds that do not model possible situations given a particular
domain, we include integrity constraints of the form oneOf(A′), where A′ is a
subset of ground atoms. Intuitively, such a constraint states that any world where
more than one of the atoms from set A′ appears is invalid. We use ICEM and
ICAM to denote the sets of integrity constraints for the EM and AM, respec-
tively, and the sets of worlds that conform to these constraints is denoted with
WEM(ICEM),WAM(ICAM), respectively.

Finally, logical formulas arise from the combination of atoms using the tra-
ditional connectives (∧, ∨, and ¬). As usual, we say a world w satisfies formula
(f), written w |= f , iff: (i) If f is an atom, then w |= f iff f ∈ w; (ii) if f = ¬f ′

then w |= f iff w 6|= f ′; (iii) if f = f ′ ∧ f ′′ then w |= f iff w |= f ′ and w |= f ′′;
and (iv) if f = f ′ ∨ f ′′ then w |= f iff w |= f ′ or w |= f ′′. We use the notation
formEM , formAM to denote the set of all possible (ground) formulas in the EM
and AM, respectively.

2.1 Probabilistic Model

The EM or environmental model is largely based on the probabilistic logic of [16],
which we now briefly review.

Definition 1. Let f be a formula over PEM, V, and C, p ∈ [0, 1], and ǫ ∈
[0,min(p, 1− p)]. A probabilistic formula is of the form f : p± ǫ. A set KEM of
probabilistic formulas is called a probabilistic knowledge base.

In the above definition, the number ǫ is referred to as an error tolerance. Intu-
itively, probabilistic formulas are interpreted as “formula f is true with proba-
bility between p− ǫ and p+ ǫ” – note that there are no further constraints over
this interval apart from those imposed by other probabilistic formulas in the
knowledge base. The uncertainty regarding the probability values stems from
the fact that certain assumptions (such as probabilistic independence) may not
be suitable in the environment being modeled.

Example 1. Consider the following set KEM:

f1 = a : 0.8± 0.1 f4 = d ∧ e : 0.7± 0.2 f7 = k : 1± 0
f2 = b : 0.2± 0.1 f5 = f ∧ g ∧ h : 0.6± 0.1
f3 = c : 0.8± 0.1 f6 = i ∨ ¬j : 0.9± 0.1

Throughout the paper, we also use K′
EM = {f1, f2, f3} �

A set of probabilistic formulas describes a set of possible probability distri-
butions Pr over the set WEM(ICEM). We say that probability distribution Pr

satisfies probabilistic formula f : p± ǫ iff: p− ǫ ≤
∑

w∈WEM(ICEM) Pr(w) ≤ p+ ǫ.

We say that a probability distribution over WEM(ICEM) satisfies KEM iff it
satisfies all probabilistic formulas in KEM.

Given a probabilistic knowledge base and a (non-probabilistic) formula q,
the maximum entailment problem seeks to identify real numbers p, ǫ such that
all valid probability distributions Pr that satisfy KEM also satisfy q : p± ǫ, and
there does not exist p′, ǫ′ s.t. [p− ǫ, p+ ǫ] ⊃ [p′− ǫ′, p′+ ǫ′], where all probability
distributions Pr that satisfy KEM also satisfy q : p′ ± ǫ′. In order to solve this
problem we must solve the linear program defined below.

Definition 2. Given a knowledge base KEM and a formula q, we have a variable
xi for each wi ∈ WEM(ICEM).

– For each fj : pj ± ǫj ∈ KEM, there is a constraint of the form:

pj − ǫj ≤
∑

wi∈WEM(ICEM) s.t. wi|=fj
xi ≤ pj + ǫj .

– We also have the constraint:
∑

wi∈WEM(ICEM) xi = 1.

– The objective is to minimize the function:
∑

wi∈WEM(ICEM) s.t. wi|=q xi.

We use the notation EP-LP-MIN(KEM, q) to refer to the value of the objective
function in the solution to the EM-LP-MIN constraints.

The next step is to solve the linear program a second time, but instead
maximizing the objective function (we shall refer to this as EM-LP-MAX) – let
ℓ and u be the results of these operations, respectively. In [16], it is shown that
ǫ = u−ℓ

2 and p = ℓ + ǫ is the solution to the maximum entailment problem.
We note that although the above linear program has an exponential number
of variables in the worst case (i.e., no integrity constraints), the presence of
constraints has the potential to greatly reduce this space. Further, there are also
good heuristics (cf. [17, 18]) that have been shown to provide highly accurate
approximations with a reduced-size linear program.

Example 2. Consider KB K′
EM from Example 1 and a set of ground atoms re-

stricted to those that appear in that program; we have the following worlds:

w1 = {a, b, c} w2 = {a, b} w3 = {a, c} w4 = {b, c}
w5 = {b} w6 = {a} w7 = {c} w8 = ∅

and suppose we wish to compute the probability for formula q = a∨ c. For each
formula in KEM we have a constraint, and for each world above we have a vari-
able. An objective function is created based on the worlds that satisfy the query
formula (in this case, worldsw1, w2, w3, w4, w6, w7). Solving EP-LP-MAX(K′

EM, q)
and EP-LP-MIN(K′

EM, q), we obtain the solution 0.9± 0.1. �

3 Argumentation Model

For the analytical model (AM), we choose a structured argumentation frame-
work [19] due to several characteristics that make such frameworks highly appli-
cable to many domains. Unlike the EM, which describes probabilistic informa-
tion about the state of the real world, the AM must allow for competing ideas.
Therefore, it must be able to represent contradictory information. The algorith-
mic approach we shall later describe allows for the creation of arguments based
on the AM that may “compete” with each other to answer a given query. In this
competition – known as a dialectical process – one argument may defeat another
based on a comparison criterion that determines the prevailing argument. Re-
sulting from this process, certain arguments are warranted (those that are not
defeated by other arguments) thereby providing a suitable explanation for the
answer to a given query.

The transparency provided by the system can allow knowledge engineers
to identify potentially incorrect input information and fine-tune the models or,
alternatively, collect more information. In short, argumentation-based reasoning
has been studied as a natural way to manage a set of inconsistent information – it
is the way humans settle disputes. As we will see, another desirable characteristic
of (structured) argumentation frameworks is that, once a conclusion is reached,
we are left with an explanation of how we arrived at it and information about why
a given argument is warranted; this is very important information for users to
have. In the following, we first recall the basics of the underlying argumentation
framework used, and then go on to introduce the analytical model (AM).

3.1 Defeasible Logic Programming with Presumptions (PreDeLP)

Defeasible Logic Programming with Presumptions (PreDeLP) [1] is a formalism
combining logic programming with defeasible argumentation; it arises as an ex-
tension of classical DeLP [20] with the possibility of having presumptions, as
described below – since this capability is useful in many applications, we adopt
this extended version in this paper. In this section, we briefly recall the basics
of PreDeLP; we refer the reader to [20, 1] for the complete presentation.

The formalism contains several different constructs: facts, presumptions, strict
rules, and defeasible rules. Facts are statements about the analysis that can al-
ways be considered to be true, while presumptions are statements that may or
may not be true. Strict rules specify logical consequences of a set of facts or
presumptions (similar to an implication, though not the same) that must always
occur, while defeasible rules specify logical consequences that may be assumed
to be true when no contradicting information is present. These building blocks
are used in the construction of arguments, and are part of a PreDeLP program,
which is a set of facts, strict rules, presumptions, and defeasible rules. Formally,
we use the notation ΠAM = (Θ,Ω,Φ,∆) to denote a PreDeLP program, where
Ω is the set of strict rules, Θ is the set of facts, ∆ is the set of defeasible rules,
and Φ is the set of presumptions. In Figure 1, we provide an example ΠAM. We
now define these constructs formally.

Θ : θ1a = p θ1b = q θ2 = r

Ω : ω1a = ¬s← t ω1b = ¬t← s ω2a = s← p, u, r, v ω2b = t← q, w, x, v

Φ : φ1 = y –≺ φ2 = v –≺ φ3 = ¬z –≺

∆ : δ1a = s –≺ p δ1b = t –≺ q δ2 = s –≺ u δ3 = s –≺ r, v

δ4 = u –≺ y δ5a = ¬u –≺ ¬z δ5b = ¬w –≺ ¬n

Fig. 1. An example (propositional) argumentation framework.

Facts (Θ) are ground literals representing atomic information or its negation,
using strong negation “¬”. Note that all of the literals in our framework must
be formed with a predicate from the set PAM. Note that information in the form
of facts cannot be contradicted. We will use the notation [Θ] to denote the set
of all possible facts.

Strict Rules (Ω) represent non-defeasible cause-and-effect information that re-
sembles an implication (though the semantics is different since the contrapositive
does not hold) and are of the form L0← L1, . . . , Ln, where L0 is a ground literal
and {Li}i>0 is a set of ground literals. We will use the notation [Ω] to denote
the set of all possible strict rules.

Presumptions (Φ) are ground literals of the same form as facts, except that
they are not taken as being true but rather defeasible, which means that they
can be contradicted. Presumptions are denoted in the same manner as facts,
except that the symbol –≺ is added.

Defeasible Rules (∆) represent tentative knowledge that can be used if nothing
can be posed against it. Just as presumptions are the defeasible counterpart of
facts, defeasible rules are the defeasible counterpart of strict rules. They are of
the form L0 –≺ L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a set of
ground literals. In both strict and defeasible rules, strong negation is allowed in
the head of rules, and hence may be used to represent contradictory knowledge.

Even though the above constructs are ground, we allow for schematic versions
with variables that are used to represent sets of ground rules. We denote variables
with strings starting with an uppercase letter.

Arguments. Given a query in the form of a ground atom, the goal is to derive
arguments for and against it’s validity – derivation follows the same mecha-
nism of logic programming [21]. Since rule heads can contain strong negation,
it is possible to defeasibly derive contradictory literals from a program. For the
treatment of contradictory knowledge, PreDeLP incorporates a defeasible argu-
mentation formalism that allows the identification of the pieces of knowledge
that are in conflict and, through the previously mentioned dialectical process,
decides which information prevails as warranted. This dialectical process involves

〈A1, s〉 A1 = {θ1a, δ1a} 〈A2, s〉 A2 = {φ1, φ2, δ4, ω2a, θ1a, θ2}
〈A3, s〉 A3 = {φ1, δ2, δ4} 〈A4, s〉 A4 = {φ2, δ3, θ2}
〈A5, u〉 A5 = {φ1, δ4} 〈A6,¬s〉 A6 = {δ1b, θ1b, ω1a}
〈A7,¬u〉 A7 = {φ3, δ5a}

Fig. 2. Example ground arguments from the framework of Figure 1.

the construction and evaluation of arguments, building a dialectical tree in the
process. Arguments are formally defined next.

Definition 3. An argument 〈A, L〉 for a literal L is a pair of the literal and
a (possibly empty) set of the EM (A ⊆ ΠAM) that provides a minimal proof
for L meeting the following requirements: (i) L is defeasibly derived from A;
(ii) Ω ∪ Θ ∪ A is not contradictory; and (iii) A is a minimal subset of ∆ ∪ Φ
satisfying 1 and 2, denoted 〈A, L〉.

Literal L is called the conclusion supported by the argument, and A is the
support of the argument. An argument 〈B, L〉 is a subargument of 〈A, L′〉 iff
B ⊆ A. An argument 〈A, L〉 is presumptive iff A∩Φ is not empty. We will also
use Ω(A) = A ∩Ω, Θ(A) = A ∩Θ, ∆(A) = A∩∆, and Φ(A) = A∩ Φ.

Our definition differs slightly from that of [22], where DeLP is introduced, as
we include strict rules and facts as part of arguments – the reason for this will
become clear in Section 4. Arguments for our scenario are shown next.

Example 3. Figure 2 shows example arguments based on the knowledge base
from Figure 1. Note that 〈A5, u〉 is a sub-argument of 〈A2, s〉 and 〈A3, s〉. �

Given an argument 〈A1, L1〉, counter-arguments are arguments that con-
tradict it. Argument 〈A2, L2〉 is said to counterargue or attack 〈A1, L1〉 at a
literal L′ iff there exists a subargument 〈A, L′′〉 of 〈A1, L1〉 such that the set
Ω(A1) ∪Ω(A2) ∪Θ(A1) ∪Θ(A2) ∪ {L2, L

′′} is contradictory.

Example 4. Consider the arguments from Example 3. The following are some of
the attack relationships between them: A1, A2, A3, and A4 all attack A6; A5

attacks A7; and A7 attacks A2. �

A proper defeater of an argument 〈A,L〉 is a counter-argument that – by
some criterion – is considered to be better than 〈A,L〉; if the two are incompa-
rable according to this criterion, the counterargument is said to be a blocking
defeater. An important characteristic of PreDeLP is that the argument compari-
son criterion is modular, and thus the most appropriate criterion for the domain
that is being represented can be selected; the default criterion used in classical
defeasible logic programming (from which PreDeLP is derived) is generalized
specificity [23], though an extension of this criterion is required for arguments
using presumptions [1]. We briefly recall this criterion next – the first defini-
tion is for generalized specificity, which is subsequently used in the definition of
presumption-enabled specificity.

Definition 4. Let ΠAM = (Θ,Ω,Φ,∆) be a PreDeLP program and let F be
the set of all literals that have a defeasible derivation from ΠAM. An argument
〈A1, L1〉 is preferred to 〈A2, L2〉, denoted with A1 ≻PS A2 iff:

(1) For all H ⊆ F , Ω(A1) ∪ Ω(A2) ∪ H is non-contradictory: if there is a
derivation for L1 from Ω(A2) ∪Ω(A1) ∪∆(A1)∪H, and there is no derivation
for L1 from Ω(A1)∪Ω(A2)∪H, then there is a derivation for L2 from Ω(A1)∪
Ω(A2) ∪∆(A2) ∪H; and

(2) there is at least one set H ′ ⊆ F , Ω(A1)∪Ω(A2)∪H ′ is non-contradictory,
such that there is a derivation for L2 from Ω(A1) ∪Ω(A2) ∪H ′ ∪∆(A2), there
is no derivation for L2 from Ω(A1)∪Ω(A2)∪H ′, and there is no derivation for
L1 from Ω(A1) ∪Ω(A2) ∪H ′ ∪∆(A1).

Intuitively, the principle of specificity says that, in the presence of two con-
flicting lines of argument about a proposition, the one that uses more of the avail-
able information is more convincing. A classic example involves a bird, Tweety,
and arguments stating that it both flies (because it is a bird) and doesn’t fly (be-
cause it is a penguin). The latter argument uses more information about Tweety
– it is more specific – and is thus the stronger of the two.

Definition 5 ([1]). Let ΠAM = (Θ,Ω,Φ,∆) be a PreDeLP program. An ar-
gument 〈A1, L1〉 is preferred to 〈A2, L2〉, denoted with A1 ≻ A2 iff any of the
following conditions hold:

(1) 〈A1, L1〉 and 〈A2, L2〉 are both factual arguments and 〈A1, L1〉 ≻PS 〈A2, L2〉.

(2) 〈A1, L1〉 is a factual argument and 〈A2, L2〉 is a presumptive argument.

(3) 〈A1, L1〉 and 〈A2, L2〉 are presumptive arguments, and

(a) Φ(A1) (Φ(A2) or,

(b) Φ(A1) = Φ(A2) and 〈A1, L1〉 ≻PS 〈A2, L2〉.

Generally, if A,B are arguments with rules X and Y , resp., and X ⊂ Y , then A
is stronger than B. This also holds when A and B use presumptions P1 and P2,
resp., and P1 ⊂ P2.

Example 5. The following are some relationships between arguments from Ex-
ample 3, based on Definitions 4 and 5.

A1 and A6 are incomparable (blocking defeaters);
A6 ≻ A2, and thus A6 defeats A2;
A5 and A7 are incomparable (blocking defeaters). �

A sequence of arguments called an argumentation line thus arises from this
attack relation, where each argument defeats its predecessor. To avoid undesir-
able sequences, which may represent circular argumentation lines, in DeLP an
argumentation line is acceptable if it satisfies certain constraints (see [20]). A
literal L is warranted if there exists a non-defeated argument A supporting L.

Clearly, there can be more than one defeater for a particular argument 〈A, L〉.
Therefore, many acceptable argumentation lines could arise from 〈A, L〉, lead-
ing to a tree structure. The tree is built from the set of all argumentation lines

rooted in the initial argument. In a dialectical tree, every node (except the root)
represents a defeater of its parent, and leaves correspond to undefeated argu-
ments. Each path from the root to a leaf corresponds to a different acceptable
argumentation line. A dialectical tree provides a structure for considering all
the possible acceptable argumentation lines that can be generated for deciding
whether an argument is defeated. We call this tree dialectical because it repre-
sents an exhaustive dialectical4 analysis for the argument in its root. For a given
argument 〈A, L〉, we denote the corresponding dialectical tree as T (〈A, L〉).

Given a literal L and an argument 〈A, L〉, in order to decide whether or not a
literal L is warranted, every node in the dialectical tree T (〈A, L〉) is recursively
marked as “D” (defeated) or “U” (undefeated), obtaining a marked dialectical
tree T ∗(〈A, L〉) as follows:

1. All leaves in T ∗(〈A, L〉) are marked as “U”s, and
2. Let 〈B, q〉 be an inner node of T ∗(〈A, L〉). Then 〈B, q〉 will be marked as “U”

iff every child of 〈B, q〉 is marked as “D”. The node 〈B, q〉 will be marked as
“D” iff it has at least a child marked as “U”.

Given an argument 〈A, L〉 obtained from ΠAM, if the root of T ∗(〈A, L〉) is
marked as “U”, then we will say that T ∗(〈A, h〉) warrants L and that L is war-
ranted from ΠAM. (Warranted arguments correspond to those in the grounded
extension of a Dung argumentation system [24].) There is a further requirement
when the arguments in the dialectical tree contains presumptions – the conjunc-
tion of all presumptions used in even (respectively, odd) levels of the tree must
be consistent. This can give rise to multiple trees for a given literal, as there can
potentially be different arguments that make contradictory assumptions.

We can then extend the idea of a dialectical tree to a dialectical forest. For
a given literal L, a dialectical forest F(L) consists of the set of dialectical trees
for all arguments for L. We shall denote a marked dialectical forest, the set of
all marked dialectical trees for arguments for L, as F∗(L). Hence, for a literal
L, we say it is warranted if there is at least one argument for that literal in the
dialectical forest F∗(L) that is labeled as “U”, not warranted if there is at least
one argument for the literal ¬L in the dialectical forest F∗(¬L) that is labeled
as “U”, and undecided otherwise.

4 Probabilistic PreDeLP

Probabilistic PreDeLP arises from the combination of the environmental and
analytical models (ΠEM and ΠAM, respectively). Intuitively, given ΠAM, every
element of Ω ∪ Θ ∪∆ ∪ Φ might only hold in certain worlds in the set WEM –
that is, they are subject to probabilistic events. Therefore, we associate elements
of Ω ∪Θ ∪∆ ∪ Φ with a formula from formEM . For instance, we could associate
formula rainy to fact umbrella to state that the latter only holds when the
probabilistic event rainy holds; since weather is uncertain in nature, it has been
modeled as part of the EM.

4 In the sense of providing reasons for and against a position.

af(θ1a) = af(θ1b) = k ∨
(

f ∧
(

h ∨ (e ∧ l)
))

af(φ3) = b

af(θ2) = i af(δ1a) = af(δ1b) = True

af(ω1a) = af(ω1b) = True af(δ2) = True

af(ω2a) = af(ω2b) = True af(δ3) = True

af(φ1) = c ∨ a af(δ4) = True

af(φ2) = f ∧m af(δ5a) = af(δ5b) = True

Fig. 3. Example annotation function.

We can then compute the probabilities of subsets of Ω ∪Θ∪∆ ∪ Φ using the
information contained in ΠEM, as we describe shortly. The notion of an anno-
tation function associates elements of Ω ∪Θ ∪∆ ∪ Φ with elements of formEM .

Definition 6. An annotation function is any function af : Ω ∪ Θ ∪ ∆ ∪ Φ →
formEM . We shall use [af] to denote the set of all annotation functions.

We will sometimes denote annotation functions as sets of pairs (f, af(f)) in
order to simplify the presentation. Figure 3 shows an example of an annotation
function for our running example.

We now have all the components to formally define Probabilistic PreDeLP
programs (P-PreDeLP for short).

Definition 7. Given environmental model ΠEM, analytical model ΠAM, and
annotation function af , a probabilistic PreDeLP program is of the form I =
(ΠEM, ΠAM, af). We use notation [I] to denote the set of all possible programs.

Given this setup, we can consider a world-based approach; that is, the defeat
relationship among arguments depends on the current state of the (EM) world.

Definition 8. Let I = (ΠEM, ΠAM, af) be a P-PreDeLP program, argument
〈A, L〉 is valid w.r.t. world w ∈ WEM iff ∀c ∈ A, w |= af(c).

We extend the notion of validity to argumentation lines, dialectical trees,
and dialectical forests in the expected way (for instance, an argumentation line
is valid w.r.t. w iff all arguments that comprise that line are valid w.r.t. w).
We also extend the idea of a dialectical tree w.r.t. worlds; so, for a given world
w ∈ WEM, the dialectical (resp., marked dialectical) tree induced by w is denoted
with Tw〈A, L〉 (resp., T ∗

w 〈A, L〉). We require that all arguments and defeaters in
these trees to be valid with respect to w. Likewise, we extend the notion of
dialectical forests in the same manner (denoted with Fw(L) and F∗

w(L), resp.).
Based on these concepts we introduce the notion of warranting scenario.

Definition 9. Let I = (ΠEM, ΠAM, af) be a P-PreDeLP program and L be a
literal formed with a ground atom from GAM; a world w ∈ WEM is said to be
a warranting scenario for L (denoted w ⊢war L) iff there is a dialectical forest
F∗

w(L) in which L is warranted and F∗
w(L) is valid w.r.t. w.

Hence, the set of worlds in the EM where a literal L in the AM must be true
is exactly the set of warranting scenarios – these are the “necessary” worlds:
nec(L) = {w ∈ WEM | (w ⊢war L)}. Now, the set of worlds in the EM where
AM literal L can be true is the following – these are the “possible” worlds:
poss(L) = {w ∈ WEM | w 6⊢war ¬L}. The probability distribution Pr defined
over the worlds in the EM induces an upper and lower bound on the probability
of literal L (denoted PL,Pr ,I) as follows:

ℓL,Pr ,I =
∑

w∈nec(L)

Pr(w), uL,Pr ,I =
∑

w∈poss(L)

Pr (w)

ℓL,Pr ,I ≤ PL,Pr ,I ≤ uL,Pr ,I

Since the EM in general does not define a single probability distribution, the
above computations should be done using linear programs EP-LP-MIN and EP-

LP-MAX, as described above.

4.1 Sources of Inconsistency

We use the following notion of (classical) consistency of PreDeLP programs: Π
is said to be consistent if there does not exist ground literal a s.t. Π ⊢ a and
Π ⊢ ¬a. For P-PreDeLP programs, there are two main kinds of inconsistency
that can be present; the first is what we refer to as EM, or Type I, (in)consistency.

Definition 10. Environmental model ΠEM is Type I consistent iff there exists
a probability distribution Pr over the set of worlds WEM that satisfies ΠEM.

We illustrate this type of consistency in the following example.

Example 6. The following formula is a simple example of an EM for which there
is no satisfying probability distribution:

rain ∨ hail : 0.3± 0;

rain ∧ hail : 0.5± 0.1.

A P-PreDeLP program using such an EM gives rise to an example of Type I
inconsistency, as it arises from the fact that there is no satisfying interpretation
for the EM knowledge base. �

Assuming a consistent EM, inconsistencies can still arise through the inter-
action between the annotation function and facts and strict rules. We will refer
to this as combined, or Type II, (in)consistency.

Definition 11. A P-PreDeLP program I = (ΠEM, ΠAM, af), with ΠAM =
〈Θ,Ω,Φ,∆〉, is Type II consistent iff: given any probability distribution Pr that
satisfies ΠEM, if there exists a world w ∈ WEM such that

⋃

x∈Θ∪Ω |w|=af(x){x}

is inconsistent, then we have Pr(w) = 0.

Thus, any EM world in which the set of associated facts and strict rules are
inconsistent (we refer to this as “classical consistency”) must always be assigned
a zero probability. The following is an example of this other type of inconsistency.

Example 7. Consider the EM knowledge base from Example 1, the AM presented
in Figure 1 and the annotation function from Figure 3. Suppose the following
fact is added to the argumentation model:

θ3 = ¬p,

and that the annotation function is expanded as follows:

af (θ3) = ¬k.

Clearly, fact θ3 is in direct conflict with fact θ1a – this does not necessarily mean
that there is an inconsistency. For instance, by the annotation function, θ1a holds
in the world {k} while θ3 does not. However, if we consider the world:

w = {f, h)

Note that w |= af (θ3) and w |= af (θ2), which means that, in this world, two
contradictory facts can occur. Since the environmental model indicates that this
world can be assigned a non-zero probability, we have a Type II inconsist pro-
gram. �

Another example (perhaps easier to visualize) in the rain/hail scenario discussed
above, is as follows: suppose we have facts f = umbrella and g = ¬umbrella,
and annotation function af (f) = rain ∨ hail and af (g) = wind. Intuitively, the
first fact states that an umbrella should be carried if it either rains or hails,
while the second states that an umbrella should not be carried if it is windy. If
the EM assigns a non-zero probability to formula (rain ∨ hail)∧wind, then we
have Type II inconsistency.

In the following, we say that a P-PreDeLP program is consistent if and only
if it is both Type I and Type II consistent. However, in this paper, we focus on
Type II consistency and assume that the program is Type I consistent.

4.2 Basic Operations for Restoring Consistency

Given a P-PreDeLP program that is Type II inconsistent, there are two basic
strategies that can be used to restore consistency:

Revise the EM: the probabilistic model can be changed in order to force the
worlds that induce contradicting strict knowledge to have probability zero.

Revise the annotation function: The annotations involved in the inconsistency
can be changed so that the conflicting information in the AM does not become
induced under any possible world.

It may also appear that a third option would be to adjust the AM – this is,
however, equivalent to modifying the annotation function. Consider the presence

of two facts in the AM: a,¬a. Assuming that this causes an inconsistency (that
is, there is at least one world in which they both hold), one way to resolve it
would be to remove one of these two literals. Suppose ¬a is removed; this would
be equivalent to setting af(¬a) = ⊥ (where ⊥ represents a contradiction in the
language of the EM). In this paper, we often refer to “removing elements of
ΠAM” to refer to changes to the annotation function that cause certain elements
of the ΠAM to not have their annotations satisfied in certain EM worlds.

Now, suppose that ΠEM is consistent, but that the overall program is Type
II inconsistent. Then, there must exist a set of worlds in the EM where there is
a probability distribution that assigns each of them a non-zero probability. This
gives rise to the following result.

Proposition 1. If there exists a probability distribution Pr that satisfies ΠEM

s.t. there exists a world w ∈ WEM where Pr(w) > 0 and
⋃

x∈Θ∪Ω |w|=af(x){x}

is inconsistent (Type II inconsistency), then any change made in order to re-
solve this inconsistency by modifying only ΠEM yields a new EM Π ′

EM such that
(
∧

a∈w a ∧
∧

a/∈w ¬a
)

: 0± 0 is entailed by Π ′
EM.

Proposition 1 seems to imply an easy strategy of adding formulas to ΠEM

causing certain worlds to have a zero probability. However, this may lead to
Type I inconsistencies in the resulting modelΠ ′

EM. If we are applying an EM-only
strategy to resolve inconsistencies, this would then lead to further adjustments
to Π ′

EM in order to restore Type I consistency. However, such changes could
potentially lead to Type II inconsistency in the overall P-PreDeLP program
(by either removing elements of Π ′

EM or loosening probability bounds of the
sentences in Π ′

EM), which would lead to setting more EM worlds to a probability
of zero. It is easy to devise an example of a situation in which the probability
mass cannot be accommodated given the constraints imposed by the AM and
EM together – in such cases, it would be impossible to restore consistency by
only modifying ΠEM. We thus arrive at the following observation:

Observation 1 Given a Type II inconsistent P-PreDeLP program, consistency
cannot always be restored via modifications to ΠEM alone.

Therefore, due to this line of reasoning, in this paper we focus our efforts on
modifications to the annotation function only. However, in the future, we intend
to explore belief revision operators that consider both the annotation function
(which, as we saw, captures changes to the AM) along with changes to the EM,
as well as combinations of the two.

5 Revising Probabilistic PreDeLP Programs

Given a P-PreDeLP program I = (ΠEM, ΠAM, af), with ΠAM = Ω∪Θ∪∆ ∪ Φ,
we are interested in solving the problem of incorporating an epistemic input
(f, af ′) into I, where f is either an atom or a rule and af ′ is equivalent to
af , except for its expansion to include f . For ease of presentation, we assume

that f is to be incorporated as a fact or strict rule, since incorporating defeasible
knowledge can never lead to inconsistency. As we are only conducting annotation
function revisions, for I = (ΠEM, ΠAM, af) and input (f, af ′) we denote the
revision as follows: I • (f, af ′) = (ΠEM, Π ′

AM, af ′′) where Π ′
AM = ΠAM ∪ {f}

and af ′′ is the revised annotation function.

Notation. We use the symbol “•” to denote the revision operator. We also
slightly abuse notation for the sake of presentation, as well as introduce notation
to convert sets of worlds to/from formulas.

– I ∪ (f, af ′) to denote I ′ = (ΠEM, ΠAM ∪ {f}, af
′).

– (f, af ′) ∈ I = (ΠAM, ΠEM, af) to denote f ∈ ΠAM and af = af ′.

– wld(f) = {w | w |= f} – the set of worlds that satisfy formula f ; and

– for(w) =
∧

a∈w a ∧
∧

a/∈w ¬a – the formula that has w as its only model.

– ΠI
AM(w) = {f ∈ Θ ∪Ω | w |= af(f)}

– W0
EM(I) = {w ∈ WEM | ΠI

AM(w) is inconsistent}

– WI
EM(I) = {w ∈ W0

EM | ∃Pr s.t. Pr |= ΠEM ∧ Pr(w) > 0}

Intuitively, ΠI
AM(w) is the subset of facts and strict rules in ΠAM whose annota-

tions are true in EM world w. The set W0
EM(I) contains all the EM worlds for a

given program where the corresponding knowledge base in the AM is classically
inconsistent and WI

EM(I) is a subset of these that can be assigned a non-zero
probability – the latter are the worlds where inconsistency in the AM can arise.

5.1 Postulates for Revising the Annotation Function

We now analyze the rationality postulates for non-prioritized revision of belief
bases first introduced in [2] and later generalized in [25], in the context of P-
PreDeLP programs. These postulates are chosen due to the fact that they are
well studied in the literature for non-prioritized belief revision.

Inclusion: For I • (f, af ′) = (ΠEM, ΠAM∪{f}, af
′′), ∀g ∈ ΠAM, wld

(

af ′′(g)
)

⊆
wld(af ′(g)).

This postulate states that, for any element in the AM, the worlds that satisfy its
annotation after the revision are a subset of the original set of worlds satisfying
the annotation for that element.

Vacuity: If I ∪ (f, af ′) is consistent, then I • (f, af ′) = I ∪ (f, af ′)

Consistency Preservation: If I is consistent, then I•(f, af ′) is also consistent.

Weak Success: If I ∪ (f, af ′) is consistent, then (f, af ′) ∈ I • (f, af ′).

Whenever the simple addition of the input doesn’t cause inconsistencies to arise,
the result will contain the input.

Core Retainment: For I • (f, af ′) = (ΠEM, ΠAM ∪ {f}, af
′′), for each w ∈

WI
EM(I ∪ (f, af ′)), we have Xw = {h ∈ Θ ∪ Ω | w |= af ′′(h)}; for each g ∈

ΠAM(w) \Xw there exists Yw ⊆ Xw ∪ {f} s.t. Yw is consistent and Yw ∪ {g} is
inconsistent.

For a given EM world, if a portion of the associated AM knowledge base is
removed by the operator, then there exists a subset of the remaining knowledge
base that is not consistent with the removed element and f .

Relevance: For I • (f, af ′) = (ΠEM, ΠAM ∪ {f}, af
′′), for each w ∈ WI

EM(I ∪
(f, af ′)), we have Xw = {h ∈ Θ ∪Ω | w |= af ′′(h)}; for each g ∈ ΠAM(w) \Xw

there exists Yw ⊇ Xw ∪ {f} s.t. Yw is consistent and Yw ∪ {g} is inconsistent.

For a given EM world, if a portion of the associated AM knowledge base is
removed by the operator, then there exists a superset of the remaining knowledge
base that is not consistent with the removed element and f .

Uniformity 1: Let (f, af ′1), (g, af
′
2) be two inputs where WI

EM(I ∪ (f, af ′1)) =
WI

EM(I ∪ (g, af ′2)); for all w ∈ WI
EM(I ∪ (f, af ′)) and for all X ⊆ ΠAM(w); if

{x | x ∈ X ∪ {f}, w |= af ′1(x)} is inconsistent iff {x | x ∈ X ∪ {g}, w |= af ′2(x)}
is inconsistent, then for each h ∈ ΠAM, we have that:

{w ∈ WI
EM(I ∪ (f, af ′1)) | w |= af ′1(h) ∧ ¬af

′′
1(h)} =

{w ∈ WI
EM(I ∪ (g, af ′2)) | w |= af ′2(h) ∧ ¬af

′′
2(h)}.

If two inputs result in the same set of EM worlds leading to inconsistencies in
an AM knowledge base, and the consistency between analogous subsets (when
joined with the respective input) are the same, then the models removed from
the annotation of a given strict rule or fact are the same for both inputs.

Uniformity 2: Let (f, af ′1), (g, af
′
2) be two inputs where WI

EM(I ∪ (f, af ′1)) =
WI

EM(I ∪ (g, af ′2)); for all w ∈ WI
EM(I ∪ (f, af ′))and for all X ⊆ ΠAM(w); if

{x | x ∈ X ∪ {f}, w |= af ′1(x)} is inconsistent iff {x | x ∈ X ∪ {g}, w |= af ′2(x)}
is inconsistent, then

{w ∈ WI
EM(I ∪ (f, af ′1)) | w |= af ′1(h) ∧ af ′′1(h)} =

{w ∈ WI
EM(I ∪ (g, af ′2)) | w |= af ′2(h) ∧ af ′′2 (h)}.

If two inputs result in the same set of EM worlds leading to inconsistencies in
an AM knowledge base, and the consistency between analogous subsets (when
joined with the respective input) are the same, then the models retained in the
the annotation of a given strict rule or fact are the same for both inputs.

Relationships between Postulates. There are a couple of interesting re-
lationships among the postulates. The first is a sufficient condition for Core
Retainment to be implied by Relevance.

Proposition 2. Let • be an operator such that I • (f, af ′) = (ΠEM, ΠAM ∪

{f}, af ′′), where ∀w ∈ WI
EM(I ∪ (f, af ′)), Π

I•(f,af ′)
AM (w) is a maximal consis-

tent subset of Π
I∪(f,af ′)
AM (w). If • satisfies Relevance then it also satisfies Core

Retainment.

Similarly, we can show the equivalence between the two Uniformity postulates
under certain conditions.

Proposition 3. Let • be an operator such that I • (f, af ′) = (ΠEM, ΠAM ∪

{f}, af ′′) and ∀w, Π
I•(f,af ′)
AM (w) ⊆ Π

I∪(f,af ′)
AM (w). Operator • satisfies Unifor-

mity 1 iff it satisfies Uniformity 2.

Given the results of Propositions 2 and 3, we will not study Core Retainment
and Uniformity 2 with respect to the construction of a belief revision operator
in the next section.

5.2 An Operator for P-PreDeLP Revision

In this section, we introduce an operator for revising a P-PreDeLP program. As
stated earlier, any subset of ΠAM associated with a world in WI

EM(I ∪ (f, af ′))
must be modified by the operator in order to remain consistent. So, for such a
world w, we introduce a set of candidate replacement programs for ΠAM(w) in
order to maintain consistency and satisfy the Inclusion postulate.

candPgm(w, I) = {Π ′
AM | Π

′
AM ⊆ ΠAM(w) s.t. Π ′

AM is consistent and

∄Π ′′
AM ⊆ ΠAM(w) s.t. Π ′′

AM ⊃ Π ′
AM s.t. Π ′′

AM is consistent}

Intuitively, candPgm(w, I) is the set of maximal consistent subsets of ΠAM(w).
Coming back to the rain/hail example presented above, we have:

Example 8. Consider the P-PreDeLP program I presented right after Exam-
ple 7, and the following EM knowledge base:

rain ∨ hail : 0.5± 0.1;

rain ∧ hail : 0.3± 0.1;

wind : 0.2± 0.

Given this setup, we have, for instance:

candPgm({rain, hail, wind}, I) =
{

{

umbrella
}

,
{

¬umbrella
}

}

.

Intuitively, this means that, since the world where rain, hail, and wind are all
true can be assigned a non-zero probability by the EM, we must choose either
umbrella or ¬umbrella in order to recover consistency. �

We now show a series of intermediate results that lead up to the representa-
tion theorem (Theorem 1). First, we show how this set plays a role in showing a
necessary and sufficient requirement for Inclusion and Consistency Preservation
to hold together.

Lemma 1. Given program I and input (f, af ′), operator • satisfies Inclusion
and Consistency Preservation iff for I • (f, af ′) = (ΠEM, ΠAM, af ′′), for all
w ∈ WI

EM(I ∪ (f, af ′)), there exists an element X ∈ candPgm(w, I ∪ (f, af ′))
s.t. {h ∈ Θ ∪Ω ∪ {f} | w |= af ′′(h)} ⊆ X.

Next, we investigate the role that the set candPgm plays in showing the nec-
essary and sufficient requirement for satisfying Inclusion, Consistency Preserva-
tion, and Relevance all at once.

Lemma 2. Given program I and input (f, af ′), operator • satisfies Inclusion,
Consistency Preservation, and Relevance iff for I • (f, af ′) = (ΠEM, ΠAM, af ′′),
for all w ∈ WI

EM(I ∪ (f, af ′)) we have {h ∈ Θ ∪ Ω ∪ {f} | w |= af ′′(h)} ∈
candPgm(w, I ∪ (f, af ′)).

The last of the intermediate results shows that if there is a consistent program
where two inputs cause inconsistencies to arise in the same way, then for each
world the set of candidate replacement programs (minus the added AM formula)
is the same. This result will be used as a support of the satisfaction of the first
Uniformity postulate.

Lemma 3. Let I = (ΠEM, ΠAM, af) be a consistent program, (f1, af
′
1), (f2, af

′
2)

be two inputs, and Ii = (ΠEM, ΠAM ∪ {fi}, af
′
i). If W

I
EM(I1) =WI

EM(I2), then
for all w ∈ WI

EM(I1) and all X ⊆ ΠAM(w) we have that:

1. If {x | x ∈ X ∪ {f1}, w |= af ′1(x)} is inconsistent ⇔ {x | x ∈ X ∪ {f2}, w |=
af ′2(x)} is inconsistent, then {X \ {f1} | X ∈ candPgm(w, I1)} = {X \
{f2} | X ∈ candPgm(w, I2)}.

2. If {X \ {f1} | X ∈ candPgm(w, I1)} = {X \ {f2} | X ∈ candPgm(w, I2)}
then {x | x ∈ X∪{f1}, w |= af ′1(x)} is inconsistent⇔ {x | x ∈ X∪{f2}, w |=
af ′2(x)} is inconsistent.

We now have the necessary tools to present the construction of our non-
prioritized belief revision operator.

Construction. Before introducing the construction, we define some preliminary

notation. Let Φ :WEM → 2[Θ]∪[Ω]. For each h there is a formula in ΠAM ∪ {f},
where f is part of the input. Given these elements, we define:

newFor(h, Φ, I, (f, af ′)) = af ′(h) ∧
∧

w∈WI
EM

(I∪(f,af ′)) | h/∈Φ(w)

¬for(wi)

The following definition then characterizes the class of operators called AFO

(annotation function-based operators).

Definition 12 (AF-based Operators). A belief revision operator • is an “an-
notation function-based” (or af-based) operator (• ∈ AFO) iff given program
I = (ΠEM, ΠAM, af) and input (f, af ′), the revision is defined as I • (f, af ′) =
(ΠEM, ΠAM ∪ {f}, af

′′), where:

∀h, af ′′(h) = newFor(h, Φ, I, (f, af ′))

where ∀w ∈ WEM, Φ(w) ∈ CandPgmaf(w, I ∪ (f, af ′)).

As the main result of the paper, we now show that satisfying a key set of
postulates is a necessary and sufficient condition for membership in AFO.

Theorem 1 (Representation Theorem). An operator • belongs to class AFO
iff it satisfies Inclusion, Vacuity, Consistency Preservation, Weak Success, Rel-
evance, and Uniformity 1.

Proof. (Sketch) (If) By the fact that formulas associated with worlds in the set
WI

EM(I∪(f, af ′)) are considered in the change of the annotation function, Vacu-
ity and Weak Success follow trivially. Further, Lemma 2 shows that Inclusion,
Consistency Preservation, and Relevance are satisfied while Lemma 3 shows that
Uniformity 1 is satisfied.

(Only-If) Suppose BWOC that an operator • satisfies all postulates and • /∈
AFO. Then, one of four conditions must hold: (i) it does not satisfy Lemma 2
or (ii) it does not satisfy Lemma 3. However, by those previous arguments,
if it satisfies all postulates, these arguments must be true as well – hence a
contradiction. �

6 Conclusions

We have proposed an extension of the PreDeLP language that allows sentences to
be annotated with probabilistic events; such events are connected to a probabilis-
tic model, allowing a clear separation of interests between certain and uncertain
knowledge. After presenting the language, we focused on characterizing belief
revision operations over P-PreDeLP KBs. We presented a set of postulates in-
spired in the ones presented for non-prioritized revision of classical belief bases,
and then proceeded to study a construction based on these postulates and prove
that the two characterizations are equivalent.

As future work, we plan to study other kinds of operators, such as more
general ones that allow the modification of the EM, as well as others that operate
at different levels of granularity. Finally, we are studying the application of P-
PreDeLP to real-world problems in cyber security and cyber warfare domains.

Acknowledgments. The authors are partially supported by UK EPSRC grant
EP/J008346/1 (“PrOQAW”), ERC grant 246858 (“DIADEM”), ARO project
2GDATXR042, DARPA project R.0004972.001, Consejo Nacional de Investi-
gaciones Cient́ıficas y Técnicas (CONICET) and Universidad Nacional del Sur
(Argentina).

The opinions in this paper are those of the authors and do not necessarily
reflect the opinions of the funders, the U.S. Military Academy, or the U.S. Army.

References

1. Martinez, M.V., Garćıa, A.J., Simari, G.R.: On the use of presumptions in struc-
tured defeasible reasoning. In: Proc. of COMMA. (2012) 185–196

2. Hansson, S.: Semi-revision. J. of App. Non-Classical Logics 7(1-2) (1997) 151–175
3. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:

Partial meet contraction and revision functions. J. Sym. Log. 50(2) (1985) 510–530

4. Gardenfors, P.: Knowledge in flux: modeling the dynamics of epistemic states.
MIT Press, Cambridge, Mass. (1988)

5. Hansson, S.O.: Kernel contraction. J. Symb. Log. 59(3) (1994) 845–859
6. Doyle, J.: A truth maintenance system. Artif. Intell. 12(3) (1979) 231–272
7. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, belief revision and

defeasible reasoning. Artif. Intell. 141(1/2) (2002) 1–28
8. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Proc.

of TAFA. (2011) 1–16
9. Thimm, M.: A probabilistic semantics for abstract argumentation. In: Proc. of

ECAI 2012. (2012) 750–755
10. Hunter, A.: Some foundations for probabilistic abstract argumentation. In: Proc.

of COMMA 2012. (2012) 117–128
11. Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract

argumentation. In: Proc. of IJCAI 2013. (2013)
12. Haenni, R., Kohlas, J., Lehmann, N.: Probabilistic argumentation systems.

Springer (1999)
13. Chesñevar, C.I., Simari, G.R., Alsinet, T., Godo, L.: A logic programming frame-

work for possibilistic argumentation with vague knowledge. In: Proc. of UAI 2004.
(2004) 76–84

14. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments.
Int. J. Approx. Reasoning 54(1) (2013) 47–81

15. Gottlob, G., Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Query answering under
probabilistic uncertainty in Datalog+/– ontologies. AMAI (2013)

16. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1) (1986) 71–87
17. Khuller, S., Martinez, M.V., Nau, D.S., Sliva, A., Simari, G.I., Subrahmanian, V.S.:

Computing most probable worlds of action probabilistic logic programs: scalable

estimation for 1030,000 worlds. AMAI 51(2-4) (2007) 295–331
18. Simari, G.I., Martinez, M.V., Sliva, A., Subrahmanian, V.S.: Focused most prob-

able world computations in probabilistic logic programs. AMAI 64(2-3) (2012)
113–143

19. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence. Springer (2009)
20. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: An argumentative ap-

proach. TPLP 4(1-2) (2004) 95–138
21. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer (1987)
22. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and

its implementation. Artif. Intell. 53(2-3) (1992) 125–157
23. Stolzenburg, F., Garćıa, A., Chesñevar, C.I., Simari, G.R.: Computing Generalized

Specificity. Journal of Non-Classical Logics 13(1) (2003) 87–113
24. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and n-person games. Artif. Intell. 77
(1995) pp. 321–357

25. Falappa, M.A., Kern-Isberner, G., Reis, M., Simari, G.R.: Prioritized and non-
prioritized multiple change on belief bases. J. Philosophical Logic 41(1) (2012)
77–113

