
Certificates and Separation Logic

Martin Nordio1, Cristiano Calcagno2, and Bertrand Meyer1

1 ETH Zurich, Switzerland firstname.lastname@inf.ethz.ch
2 ETH Zurich, Imperial College London and Monoidics Ltd ccris@doc.ic.ac.uk

Abstract. Modular and local reasoning about object-oriented programs has been
widely studied for programing languages such as C# and Java. Once source
programs have been proven, the next verification challenge is to ensure that the
code produced by the compiler is correct. Since verifying a compiler can be
extremely complex, this paper uses proof-transforming compilation, an alternative
approach which automatically generates certificates, a bytecode proof, from proofs
in the source language. The paper develops a bytecode logic using separation logic,
and proof translation from proofs of object-oriented programs to bytecode. The
translation also handles proofs for concurrent programs. The bytecode logic and
the proof transformation are proven sound.
keywords: software verification, program proofs, separation logic, proof-carrying
code

1 Introduction

Object-oriented programming has been increasingly attractive in the last decades, how-
ever, it has also introduced new verification challenges. Solutions have been proposed,
for example, separation logic [20] has extended Hoare logics to reason about programs
with mutable data structures; ownership [7] has introduced a technique to reason about
the heap structure.

Once the object-oriented programs have been proven correct with respect to their
specifications, the verification process should ensure that the code produced by the
compiler is correct. Since verifying the compiler is complex [11], techniques such as
translation validation [22] have been proposed. In translation validation, instead of
proving that the compiler always generates a correct target code, each translation is
validated showing that the target code correctly implements the source program. The
translation validation approach compares the input and the output, using an analyzer,
independently of how the compiler is implemented. Together with a source proof, this
gives an indirect correctness proof for the bytecode program.

Expanding the ideas of Proof-Carrying Code [13], Barthe et al [4]3 and Nordio et
al. [18] have proposed an alternative verification process based on proof-transforming
compilation (PTC). The PTC approach consists of translating proofs of object-oriented
programs to bytecode proofs. The verification process is performed at the level of the
source program taking advantage of already developed verification techniques. Then,
a proof-transforming compiler translates automatically a program and its proof into

3 Barthe et al. called this approach preservation of proof obligations.

bytecode representing both the program and the proof. The main advantage of PTC is
that it addresses full functional correctness as expressed by the original specifications.

Previous work on proof-transforming compilation [1,3,12] has developed the basics
of the technique, using either Hoare-style logics or verification condition generators. The
main limitation of these works lies on the properties that can be proven in the source
program. Those logics cannot prove programs with mutable data structures, for example
the programs presented by Distefano et al. [8], which include a visitor pattern example.
This restriction is produced by the techniques used to verify the source program.

This paper presents a bytecode logic using separation logic, and proof transformation
from Java to bytecode. The translation takes a proof of object-oriented programs written
using Parkinson and Bierman’s logic [21], and produces a bytecode proof in separation
logic style. The bytecode logic introduces dynamic and static specifications for bytecode
methods, and framing for bytecode instructions. The use of separation logic allows us
to handle proofs that previous works [1,3,12] could not. The definition of the bytecode
logic using separation logic makes the translation feasible. In this paper, we also extend
the proof transformation to handle proofs for concurrent programs.

2 Overview of Separation Logic

Separation logic [20] provides an elegant approach to reasoning about programs with
mutable data structures. It extends Hoare logic with spatial connectives which allow
assertions to define separation between parts of the heap. In this paper, we use Parkinson
and Bierman’s logic [21], which we briefly describe next.

2.1 The Core Language

The programming language used in this paper is a common subset of C# and Java
extended with static and dynamic specifications. The syntax is:

L ::= class C [extends C1] { public D f ;A M } Class Definition
A ::= define αC(x) as P Abstract Predicate Family
M ::= public virtual C m(D p) DSspec D x; s; Method Definition

| public override C m(D p) DSspec D x; s;
DSspec ::= dynamic Spec; static Spec Dynamic and Static Spec.
Spec ::= {P}_{Q} | Spec also {P}_{Q} Specification Combination
s ::= x = e | s; s | x = y.f | x.f = e Statements

| x = y.m(e) | x = y.C :: m(e) | x = new C()

Programs are defined as a set of classes, where each class consists of a collection
of methods and field definitions; a class can specify at most one superclass. The class
definition also contains abstract predicates families (APF). A method declaration includes
the method name, parameters with type and name, method specifications, as well as
a method body. Method specifications include a static specification and a dynamic
specification. Static specifications are used to verify the implementation of a method and
direct method calls (in Java this would be with a super call); dynamic specifications are
used for calls that are dynamically dispatched. The specifications consist of a sequence

2

of pre- and postconditions separated by the keyword also: {P1}_{Q1} also {P2}_{Q2}
is defined as {P1 ∧ P2}_{Q1 ∧ Q2}. The return statement is not supported in the source
language; the return value is assigned to a local variable result. The notation we use is
the following: f ranges over field names, m ranges over method names, x over sequences
of variables, p for sequences of method call parameters, C,C1,D over class names; e
denotes a sequence of expressions.

An abstract predicate is defined with a name, a definition, and a scope. The abstract
predicate’s name and its definition can be swapped within the scope; outside the scope,
the abstract predicate is handled atomically, i.e. by its name. For example, in a class Cell,
we define the abstract predicate ValCell(x, y) as x.val 7→ y. The scope of the predicate is
inside of the class Cell; in the implementation of Cell, the predicate ValCell(x, y) and its
definition can be swapped; outside the class, the predicate is handled by its name.

To accommodate inheritance, Parkinson and Bierman [21] introduce abstract predi-
cates families. Each class can define its own entry predicate for an APF; this definition
allows weakening preconditions, and strengthening postconditions for method overriding.
The relationship between the family and entry is given by x :C⇒ (α(x, x)⇔ αc(x, x))
where α is an abstract predicate, and αC is the definition of the predicate for the class C.

2.2 Separation Logic for the Source Language

Memory Model and Assertion Language. Program states are mappings from local
variables and parameters to values, and from locations to values: State ≡ Store × Heap,
where Store ≡ Var ⇀ Value, and Heap ≡ Location ⇀ Value. The formulae of assertion
language are given by the following grammar:

P,Q := true | false | P ∧ Q | P ∨ Q | P⇒Q | ∀x.P | ∃x.P | P ∗ Q | e=e | x.f 7→e′ | α(e) | αc(e)
e := x | null | e op e

The semantics of formulae is defined as follows:

σ, h |= P ∗ Q
def
= ∃h0, h1.h0 ⊥ h1 and h0 · h1 = h and σ, h0 |= P and σ, h1 |= Q

σ, h |= e = e′
def
= σ(e) = σ(e′)

σ, h |= x.f 7→ e′
def
= h(σ(x)).f = σ(e′)

σ, h |= α(x)
def
= h ∈ (Λ(α)(σ(x)))

For σ ∈ Store, σ(e) denotes the evaluation of the expression e in the store σ.
For h ∈ Heap, h(e).f denotes the evaluation of the field f of the expression e. The
connectives (∧,∨) and quantifiers (∃,∀) are interpreted in the usual way, and omitted
here. The formula P ∗ Q allows us to assert that two portions of the heap are disjoint in
which P and Q hold respectively. The interpretation of abstract predicates is given by the
function Λ, which maps predicate names to predicate definitions.
Method and Statement Specifications. Properties of methods are written as ∆;Γ `
C.m(x) dynamic {PC}_{QC} static {RC}_{SC} where ∆ is the environment containing
the logical assumptions about APFs that are available in the scope of the method m,
and Γ is the environment containing the dynamic and static method specifications. This
specification informally means that the method m in class C can be verified to meet its
specification. In particular, Γ is used to handle recursion; Γ is initialized at the beginning
of the proof with all the static and dynamic specifications.

3

The environments are given by the following grammar

Γ ::= ε | {P}C.m(p){Q}, Γ | {P}C ::m(p){Q}, Γ
∆ ::= ε | αC

def
= λ(x; x)P,∆

where dynamic specifications are denoted by {P} C.m(p) {Q}; static specification are
denoted by {P} C ::m(p) {Q}.

Properties of statements are expressed by Hoare triples of the form∆;Γ ` {P} s {Q}.
This triple defines the following refined partial correctness property [16]: if s’s execution
starts in a state satisfying P, then (1) s terminates normally in a state where Q holds, or
(2) s aborts due to errors or actions than are beyond the semantics of the programming
language, e.g., memory problem, or (3) s runs forever.

2.3 Proof Rules

The proof rules, taken from Parkinson and Bierman’s work [21], for a subset of the
source language is defined as follows:

Field Write
∆;Γ ` {x.f 7→ _} x.f := e {x.f 7→ e}

Dynamic Dispatch
C.m(p) : {P} _ {Q} ∈ Γ

∆;Γ ` {P[x, e/this, p] ∧ this 6= null} z = x.m(e) {Q[z, x, e/result,this, p]}
where x has a static type C.

Direct Method Call
C::m(p) : {R} _ {S} ∈ Γ

∆;Γ ` {R[x, e/this, p] ∧ this 6= null} z = x.C ::m(e) {S[z, x, e/result,this, p]}
Method

∆;Γ ` {RC} body {SC} (Body verification)
∆ ` {RC}_{SC} ⇒ {PC ∗ this :C}_{QC} (Dynamic dispatch)

∆;Γ ` public virtual C.m(x) dynamic {PC}_{QC} static {RC}_{SC} body

The rule for field write is standard. The rule for direct method call uses the static
specification; C::m(p) : {R} _ {S} ∈ Γ denotes that Γ contains the static specification
{R}_{S}, which is associated with the method m in class C. The rule for dynamic
dispatch is similar to the direct method call but uses the dynamic specification; C.m(p) :
{P} _ {Q} ∈ Γ denotes that Γ contains the dynamic specification {P}_{Q} that is
associated with the method m. The connection between the method body proofs and
the method specifications is formalized with the Method rule. This rule has two proof
obligations showing that (1) the method body satisfies its static specification; and (2)
the use of the dynamic specification is valid for dynamic dispatch. The implication
∆ ` {RC}_{SC} ⇒ {PC ∗ this :C}_{QC}means that the static precondition RC implies
the dynamic precondition PC ∗ this :C, and the dynamic postcondition QC implies the
static postcondition SC. Note that to handle recursion, the logic does not add any dynamic
and static specifications to the environment Γ ; Γ is initialized at the beginning with all
these specifications. The logic also has a rule for overridden methods, which is similar
to the Method rule and adds a proof obligation that shows the new dynamic specification
is a valid behavioral subtype. This rule is omitted here.

4

To prove a class, the following Class rule is used:

for all Mi in M : ∆;Γ ` Mi

∆;Γ ` class C : D {public T f ;M }

To be able to fold and unfold the definition of an abstract predicate, the logic has two
axioms. These axioms allows folding and unfolding if and only if the abstract predicate
is in scope. The axioms are:

Open: (α(x)
def
= P), Λ |= α(e)⇒ P[e/x] Close: (α(x)

def
= P), Λ |= P[e/x]⇒ α(e)

One of the most important rules for separation logic is the Frame rule. This rule is
defined as follows:

∆;Γ ` {P} s {Q}
∆;Γ ` {P ∗ R} s {Q ∗ R}

where Mod(s) ∩ FV(R) = ∅

The expression Mod(s) ∩ FV(R) = ∅ expresses that s does not modify the free
variables of R. The logic also has rules for weakening and elimination of abstract
predicates. Space prevents us from presenting these rules, for a complete description of
the logic see [21].

2.4 Example

Figure 1a shows an example from Parkinson and Bierman [21], which illustrates the use
of static and dynamic specifications, and abstract predicates. The class Cell implements
a single cell with an integer value; the class Recell extends the implementation of Cell
storing the previous value of the cell. Each method has two specifications: a dynamic
specification, that is used for dynamic method calls, and a static specification, that is used
to verify the implementation and direct method calls. To define the dynamic specification
of the method set, the abstract predicate family Val(x, y) is used; the definition of this

predicate for the class Cell is ValCell(x, y)
def
= x.val 7→ y. This predicate expresses that

the field val of the object x points to the object y. In the class Recell, the method set is
overridden. Its specification is extended, and the predicate Val takes an extra argument.

The definition is ValRecell(x, y, z)
def
= ValCell(x, y) ∗ x.bak 7→ z. In this definition, the

operator ∗ is used to express non-interference.
The proof of the source example consists of a proof for the classes Cell and Recell.

The proof of the class Recell consist of the proof of the method set; these proofs are
constructed applying the Class rule and the Method rule respectively. A sketch of the
proof of the method set is presented in Figure 1b. It applies the rules Direct Method Call
as well as the Open and Close axioms.

3 A Separation Logic for Bytecode

3.1 The Bytecode Language

The bytecode language consists of classes with methods and fields. Methods are im-
plemented as method bodies consisting of a sequence of labeled bytecode instructions.

5

class Cell {
public int val ;
public virtual void set (int x)

dynamic {Val(this ,_)} _ {Val(this ,x)}
static { this . val 7→ _}_{this . val 7→ x)}
{ val = x ; }

public virtual int get ()
dynamic

{Val(this ,v)} _ {Val(this ,v) ∗ result =v }
static

{ this . val 7→ _}_{this . val 7→ x) ∗ result =v}
{ ret := val ; } }

class Recell extends Cell {
public int bak;
public override void set (int x)
dynamic

{Val(this ,v ,_)}_{Val(this ,x ,v)}
static

{ this . val 7→ v}_{this . val 7→ x ∗ this .bak 7→ v}
{ bak = super.get () ; super. set (x) ; } }

(a) Cell Example

{ ValRecell(this, v, _) } [Open Axiom]
{ ValCell(this, v) ∗ this.bak 7→ _ }
this .bak = super.get () ;
{ ValCell(this, v) ∗ this.bak 7→ v } [Direct Method Call]
super. set (x) ;
{ ValCell(this, x) ∗ this.bak 7→ v } [Direct Method Call]
{ ValRecell(this, x, v) } [Close Axiom]

(b) Sketch of the Proof for the Method set

Fig. 1. Example using Static and Dynamic Specifications.

Bytecode instructions operate on the operand stack, local variables (which also include
parameters), and the heap. Each method body ends with a return instruction, which
return the control flow to the caller; a method returns the value stored in a special special
local variable result. This language is extended with dynamic and static specifications.
We also introduced abstract predicates families to the bytecode language. This extension
to the bytecode language makes the translation feasible. The syntax is:

L,A,M,DSspec, Spec ::= as defined in Section 2.1

s ::= l : Inst
Inst ::= pop x | push v | goto l′ | nop | return | brtrue l′ |

putfld f | newobj C | invokespecial C::m

This language is similar to Java bytecode. We treat local variables and method
parameters using the same instructions. Instead of using an array of local variables like in
Java Bytecode, we use the name of the source variable. To simplify the proof translation,
we assume the bytecode language has a boolean type.

The semantics of the instructions is as follows: the instruction pop x removes the top
element of the stack and assigns it to x; push v puts the value v on top of the stack; goto
transfers control the program point l’; nop has no effect; return returns to caller; brtrue
transfers control to the label l′ if the top of the stack is true removing this value from the
stack; the instruction putfld f updates the field f ; newobj creates an object of type C.
The instruction invokespecial is used to call private methods and super methods.

3.2 Memory Model

Bytecode program states are a triple consisting of an operand stack, a local store, and a
heap: State ≡ Stack × Store × Heap, where Stack ≡ Value∗, Store ≡ Var ⇀ Value,

6

and Heap ≡ Location ⇀ Value. The Stack type is defined as a list of values; Store
is a mapping from local variables and parameters to values; Heap is a mapping from
locations to values. In the following section, we present the axiomatic semantics; the
operational semantics and the soundness proof are presented in our technical report [15].

3.3 Axiomatic Semantics

Assertion Language. Formulae for the assertion language of bytecode method specifica-
tions are the same as for the source language (described in Section 2.2). The formulae for
the assertion language for preconditions of bytecode instructions are extended because
the precondition can refer to the stack. Formulae are defined as S • P where S is a
stack of values, and P is a formula defined as in the source language. The definition is
BytecodePre := S • P where S := e∗, and P and e are defined as in Section 2.2. The
formal semantics of formulae is defined as follows:

s, σ, h |= S • P
def
= s, σ |= S and σ, h |= P

(v1, ..., vn), σ |= (e1, ...em)
def
= n = m and σ(ei) = vi

σ, h |= P
def
= as defined in Section 2.2

Following, we define the implication operator for bytecode preconditions:

Definition 1. Given the stacks S1 and S2 and the expressions P and Q, then s, σ, h |=
S1 • P ⇒ S2 •Q iff s, σ, h |= S1 • P implies s, σ, h |= S2 •Q. We write S1 • P ⇒ S2 •Q
to mean validity: ∀s, σ, h : s, σ, h |= S1 • P ⇒ S2 • Q.

Proof Rules for Classes. A bytecode proof consists of a list of proofs for the bytecode
classes. To prove the bytecode classes, the logic has the same Class rule and Frame rule
as in the source language.
Proof Rules for Method Specifications. Properties of bytecode methods are defined
as ∆;Γ ` C.m(x) dynamic {PC}_{QC} static {RC}_{SC}. This definition is the same
as in the source language. In particular the treatment of recursion is the same as in the
source logic: the environment Γ contains the static and dynamic specifications, and it is
initialized at the beginning of the proof.

The logic has a similar Method rule and Override rule to the logic for the source
language. The bytecode Method rule is defined as follows:

∆ ` {RC}_{SC} ⇒ {PC ∗ this :C}_{QC} (Dynamic dispatch)
RC ⇒ E1 Ej ⇒ SC body = {E1} 1 : I1, ... {Ej} j : return Ψ = (l1,E1) ... (lj,Ej)

∀i ∈ 1, ...j : ∆;Γ ;Ψ ` {Ei} i : Ii (Bytecode body verification)
∆;Γ ` public C.m(x) dynamic {PC}_{QC} static {RC}_{SC} body

This rule, besides showing that the use of dynamic dispatch is valid, has three extra
proof obligations: we need to verify that (1) the precondition of the method implies
the precondition of the first bytecode instruction (E1); (2) the postcondition of the last
bytecode instruction (Ej) implies the method postcondition, and (3) all the instruction
specifications of the method m hold. Note that the body of the method m, denoted by
body, is a list of bytecode specifications of the form ∆;Γ ;Ψ ` {Ei} i : Ii.

7

Proof Rules for Instruction Specifications. The bytecode logic treats instructions
individually since control can be transferred into the middle of a sequence. Each in-
struction at the label l has a precondition El. Bytecode specifications have the form
∆;Γ ;Ψ ` {El} l : inst where ∆ is the environment containing the APF, Γ is the
environment containing the dynamic and static method specifications (as in the source
logic), and Ψ is a mapping from labels to preconditions. We use the environment Ψ to
make explicit the list of successor preconditions. This environment is used, in particular
for the application of the Frame rule.

The semantics of ∆;Γ ;Ψ ` {El} l : inst is: if the precondition El holds when the
program counter is at the label l, then the preconditions of the successor instructions
hold after successful execution of instruction inst.

Following, we present the rules for pop, push, and brtrue. For the complete defini-
tion see our technical report [15]:

S • ∃x′.x = v[x′/x] ∧ P[x′/x] ⇒ El+1

∆;Γ ;Ψ,(l+1,El+1) ` {(S,v)•P} l:pop x
(S, v) • P ⇒ El+1

∆;Γ ;Ψ, (l+1,El+1) ` {S•P}l :push v

S • P ∧ v = true⇒ El′ S • P ∧ v = false⇒ El+1

∆;Γ ;Ψ, (l′,E′
l), (l + 1,El+1) ` {(S, v) • P} l : brtrue l′

In the rule of the instruction pop, the precondition assumes that the operand stack is
not empty. The implication S • ∃x′.x = v[x′/x] ∧ P[x′/x] ⇒ El+1 expresses that one
has to show that the formula S • ∃x′.x = v[x′/x] ∧ P[x′/x] implies the precondition of
the next instruction. In this formula, the operand stack is S since the value v has been
popped and assigned to x. The replacements are similar to the assignment rule in the
source language. The environment Ψ, (l + 1,El+1) expresses that the precondition of the
instruction at label l + 1 is El+1. The rule for push adds a value v on top of the stack S,
then one has to show that (S, v) • P implies the next instruction’s precondition.

Below, we present the rule for invokespecial (the rule for invokevirtual is similar).
Similar to the source logic, this rule uses the static specifications.

C::m(p) : {T}_{R} ∈ Γ (S, v) • R[y/this, z/p, v/result]⇒ El+1

∆;Γ ;Ψ, (l + 1,El+1) ` {(S, y, z) • T[y/this, z/p] ∧ y 6= null} l : invokespecial C :m

where v is a logical variable.

Frame Rule for Bytecode Instructions. The Frame rule of the logic of the source
language can be applied to both method specifications and instructions. For example, the
Frame rule could be applied to a triple where the instruction is an assignment. In our
bytecode logic, we have developed a Frame rule for bytecode specifications. This rule
is needed to translate the Frame rule from the source language. The rule is defined as
follows:

∆;Γ ;Ψ ` {S•P}l : inst Ψ ′=Succ(l, Ψ) Ψ=Ψ ′,Ψ ′′

∆;Γ ; (Ψ ′ ∗ R), Ψ ′′ ` {S • P ∗ R} l : inst
where Mod(inst)∩FV(R)=∅

Bytecode specifications can have several successors. For example, the bytecode
branching instruction brtrue l has two successors: the next instruction and the instruction

8

at label l. The standard Frame rule (in the source logic) strengthens both the precondition
and the postcondition of the triple. Since bytecode specifications can have several
successors, we need to strengthen all successor preconditions. The successor instructions
are contained in the environment Ψ ′. It is constructed using the function Succ, which
yields the environment with the label l and its precondition, and l’s successors. The
environment Ψ ′ ∗ R is obtained from the successor instructions of l in Ψ ′, by adding ∗R
to each precondition. These separating conjunctions are only added to the preconditions
of l and the successor instructions, so the environment Ψ ′′ is not modified.

Language-Independent Rules. The bytecode logic also has language-independent
rules such as stack-disjointness. In this section, we present the most important language-
independent rules; for a full description see our technical report [15]. The following rule
is used in the proof translation to embed a local proof transformation in a wider context,
for example to combine the results of applying the Frame rule to single instructions.

Env-weakening
∆;Γ ;Ψ ` {P} l : inst

∆;Γ ;Ψ, Ψ ′ ` {P} l : inst

Another language-independent rule is the stack-disjointness rule, which allows
reasoning about stacks that might have different values and sizes. For example, this rule
allows reasoning about a program that might push either a value v1 or a value v2 into the
stack, and therefore, the top of the stack is either v1 or v2. The rule is defined as:

stack-disjointness
∆;Γ ;Ψ ` {(S, v1)

∨
(S, v2) • P} l : inst

∆;Γ ;Ψ ` {(S, (v1
∨

v2)) • P} l : inst

The semantics of the formulae, denoted as |=, is extended to support stack disjoint-
ness: S1

∨
S2 • P, and expression disjointness: x = (v1

∨
v2)4. The semantics is:

s, σ |= S1
∨

S2
def
= (s, σ |= S1 or s, σ |= S2)

(s, e), σ |= (S1, (v1
∨

v2))
def
= (s, σ |= S1 and (e = σ(v1) or e = σ(v2))

s, h |= x = (v1
∨

v2)
def
= s, σ |= (x = v1) ∨ (x = v2)

3.4 Examples

This subsection presents two examples illustrating the application of the frame rule and
disjointness rule for bytecode.

Example Applying the Frame Rule. Assume the following valid bytecode proof:

∆;Γ ; (l2, S2 • P2) ` {S1 • P1} l1 : push x
∆;Γ ; (l3, S3 • P3), (l5, S5 • P5) ` {S2 • P2} l2 : brtrue l5
∆;Γ ; (l4, S4 • P4) ` {S3 • P3} l3 : push y
∆;Γ ; (l5, S5 • P5) ` {S4 • P4} l4 : goto l6
∆;Γ ; (l6, S6 • P6) ` {S5 • P5} l5 : push z
∆;Γ ; ε ` {S6 • P6} l6 : return

4 The expression disjointness is used when the value v1
∨

v2 is popped from the stack and
assigned to a variable x

9

where Pi is the precondition at label li. The application of the Frame rule to the in-
structions at labels l1...l6 adds ∗R to each precondition. Given that each instruction
specification contains a list of the successors, the rule also adds ∗R to each precondition
in the environment Ψ . After applying the Frame rule, we obtain the following proof:

∆;Γ ; (l2, S2 • P2∗R) ` {S1 • P1∗R} l1:push x
∆;Γ ; (l3,S3 • P3∗R),(l5,S5 • P5∗R) ` {S2 • P2∗R} l2:brtrue l5
∆;Γ ; (l4, S4 • P4 ∗ R) ` {S3 • P3 ∗ R} l3:push y
∆;Γ ; (l6, S6 • P6 ∗ R) ` {S4 • P4 ∗ R} l4:goto l6
∆;Γ ; (l6, S6 • P6∗R) ` {S5 • P5∗R} l5:push z
∆;Γ ; ε ` {S6 • P6 ∗ R} l6: return

Note that the instruction l2 has two successors: l3 and l5. Thus, the application of
the frame rule changes the environment (l3,P3), (l5,P5) to (l3,P3 ∗ R), (l5,P5 ∗ R).
Applying the Env-weakening rule, we obtain the following proof:

∆;Γ ;Ψ ` {S1 • P1 ∗ R} l1 : push x
∆;Γ ;Ψ ` {S2 • P2 ∗ R} l2 : brtrue l5
∆;Γ ;Ψ ` {S3 • P3 ∗ R} l3 : push y
∆;Γ ;Ψ ` {S4 • P4 ∗ R} l4 : goto l6
∆;Γ ;Ψ ` {S5 • P5 ∗ R} l5 : push z
∆;Γ ;Ψ ` {S6 • P6 ∗ R} l6 : return

where Ψ
def
= (l1,P1 ∗ R) ... (l6,P6 ∗ R)

Example Applying the Disjointness Rule. Assume we want to prove the following
program:

l1 : push b
l2 : brtrue l5
l3 : push 0
l4 : goto l6
l5 : push 1
l6 : pop x
l7 : nop

where at the instruction l7 the expression x = 0 ∨ x = 1 holds. To simplify the proof,
the omit the details of the environments ∆;Γ ;Ψ and we write ∆;Γ ;Ψ without defining
the successor instructions in Ψ . The preconditions for these instructions are as follows
(assuming the stack is S before the execution of this code):

∆;Γ ;Ψ ` {S • True} l1 : push b
∆;Γ ;Ψ ` {(S, b) • True} l2 : brtrue l5
∆;Γ ;Ψ ` {S • True} l3 : push 0
∆;Γ ;Ψ ` {(S, 0) • True} l4 : goto l6
∆;Γ ;Ψ ` {S • True} l5 : push 1
∆;Γ ;Ψ ` {(S, (0

∨
1)) • True} l6 : pop x

∆;Γ ;Ψ ` {S • x = 0 ∨ x = 1} l7 : nop

The preconditions at labels l1 to l5 hold by applying the push, brtrue, push, and
goto rules. The interesting part of the proof is at labels l6 and l7. Applying the stack
disjointness rule we can prove:

10

stack-disjointness
∆;Γ ;Ψ ` {(S, 0)

∨
(S, 1) • True} l : inst

∆;Γ ;Ψ ` {(S, (0
∨

1)) • True} l : inst

Now, we need to prove that the instructions at labels l4 and l5 satisfy the precondition
(S, 0)

∨
(S, 1)•True. By definition of (S, 0)

∨
(S, 1)•True, the precondition {(S, 0)•True}

implies (S, 0)
∨
(S, 1)•True, and the precondition {(S, 1)•True} implies (S, 0)

∨
(S, 1)•

True. Then, applying the goto and pop rules, the instructions at labels l4 and l5 hold.
To prove the instruction of line l7, we apply the pop rule, obtaining:

S • x = (0
∨
1) ∧ True ⇒ S • x = 0 ∨ x = 1

∆;Γ ;Ψ ` {(S, (0
∨

1)) • True}l6 : pop x

The implication holds by definition of x = 0
∨

1 which is defined as x = 0 ∨ x = 1.
Therefore, the proof is a valid proof.

4 Proof Transformation for Separation Logic

The proof translation takes a proof in the source language (Section 2), and produces a
proof in the bytecode logic (Section 3). The proof translation is developed using the
translation functions∇C,∇M ∇S, and∇E, which translate classes, methods, instructions,
and expressions respectively. The signature of these functions are as follows:

∇C : ProofTree→ BytecodeProofTree ∇M : ProofTree→ BytecodeProofTree
∇S : ProofTree→ List[BytecodeSpec] ∇E : Pre× Exp× Post→ List[BytecodeSpec]

A ProofTree is a derivation in the logic of the source language. A BytecodeProofTree
is a derivation in the bytecode logic; the function ∇S produces the proof for the body of
a bytecode method; it consists of a list of bytecode specifications. The postcondition in
the function∇E is used to prove soundness of the translation. In the following sections,
we present the translation for method specifications, the Frame rule, and statements.
Proof Translation for Method Specifications. A source proof for a class C consists
of a list of method names with a dynamic and static specification, and proofs for the
method bodies. The source logic uses the Class rule to prove the method bodies. Since
the source and the bytecode logic treat the heap in the same way, use the same abstract
predicate definitions, and have the same method specifications, these environments are
not modified by the translation. To translate classes, the translation applies the Class rule
in the bytecode. The translation is defined as follows:

∇C

(
for all Mi in M : ∆;Γ ` Mi

∆;Γ `class C:D{public T f ;M}

)
=

for all Mi in M : ∇M(∆;Γ ` Mi)

∆;Γ ` class C:D{public T f ;M }

The function∇M maps proofs of methods in Java to proofs of methods in bytecode.
Given that the signature of the methods in Java and bytecode are the same (both use
dynamic and static specifications), the translation does not modify the signature of the
methods. The resulting bytecode proof uses the Method rule in bytecode where the body

11

of the method is produced by the translation∇S. The translation is defined as follows:

∇M


∆;Γ ` {RC} body {SC} (Body verification)

∆ ` {RC}_{SC} ⇒ {PC ∗ this :C}_{QC} (Dynamic dispatch)

∆;Γ ` public virtual C.m(x)
dynamic {PC}_{QC} static {RC}_{SC} body

 =

∆ ` {RC}_{SC} ⇒ {PC ∗ this :C}_{QC} (Dynamic dispatch)
RC ⇒ E1 Ej ⇒ SC body_bytecode = ∇S(body) (Bytecode body verification)
∆;Γ ` public C.m(x) dynamic {PC}_{QC} static {RC}_{SC} body_bytecode

Proof Translation of the Frame Rule. To translate the Frame rule applied to statements,
first we apply the translation∇S to the triple ∆;Γ ` {P} s {Q} producing the bytecode
derivations

∆;Γ ;Ψ1 ` {S1 • P1} l1 : i1 ... ∆;Γ ;Ψn ` {Sn • Pn} ln : in
where Ψk only contains the labels and preconditions relevant to instruction ik

Then, we apply the frame rule for bytecode instructions (page 8) to add the predicate
∗R to the conjunction to the precondition of each derivation, and to the environment
Ψi. Finally, we use the Env-weakening rule to unify the environments resulting from
the application of the Frame rule into a single environment for the whole block of
instructions. The translation produces the following proof:

∆;Γ ;Ψ ` {S1 • P1 ∗ R} l1 : i1 ... ∆;Γ ;Ψ ` {Sn • Pn ∗ R} ln : in

where Ψ
def
= Ψ1 ∗ R, Ψ2 ∗ R, ..., Ψk ∗ R

Proof Translation of Statements. In this section, we present the translation functions
for compound and direct method call; for a complete definition see our technical re-
port [15]. The translation of a compound is defined as:

∇S(
{P}s1{Q} {Q}s2{R}
{P}s1; s2{R}

) = ∇S({P}s1{Q}) +∇S({Q}s2{R})
The direct method call translation is as follows:

∇S

(
C.m(p) : {P} _ {Q} ∈ Γ

∆;Γ ` {P′} z = x.C ::m(e) {Q[z, x, e/result,this, p]}

)
=

∆;Γ ;Ψ1 ` {ε • P′} LA : push x
∇E(x • P′ , e, (x, e) • P′)

∆;Γ ;Ψ2 ` { (x, e) • P′} LB : invokespecial C ::m
∆;Γ ;Ψ3 ` { result • Q[x, e/this, p] } LC : pop z

where P′ is defined as P[x, e/this, p] ∧ this 6= null , and Ψ1, Ψ2, Ψ3 only contain the
labels relevant to the instructions at labels LA, LB, and LC respectively.

5 Proof Transformation for Concurrent Programs

This section extends the PTC approach to handle concurrent programs. We first present
the source logic, the bytecode logic and its proof transformation for disjoint concurrency.
Then, we expand the approach to critical regions.

12

5.1 Basic Concurrency

In Java, concurrency is implemented using the Thread class. This class contains methods
such as start: to execute a thread, and join: to wait for the termination of a thread.
To handle critical regions, the instruction synchronized is used. To simplify the se-
mantics, we assume an instruction s1 || s2 in the source language, which runs the
instructions s1 and s2 concurrently. This instruction is equivalent to execute s1.start();
s2.start();s1.join();s2.join(). For the bytecode language, we also assume the threads are
first run and then joined; thus, we assume an instruction invokeStartJoin.
Concurrency for the Source Logic. In this paper, we use the axiomatic semantics of the
instruction s1 || s2 defined by O’Hearn [19]. The rule, called the Disjoint Concurrency
rule, is defined as follows:

∆;Γ ` {P1} s1 {Q1} ∆;Γ ` {P2} s2 {Q2}
∆;Γ ` {P1 ∗ P2} s1 || s2 {Q1 ∗ Q2}

where s1 does not modify any variables

free in P2, s2,Q2, and conversely.

Concurrency for the Bytecode Logic. Let C1:run and C2:run be bytecode methods.
The instruction invokeStartJoin C1:run C2:run executes the run methods concurrently
and waits for the termination of both. To simplify the semantics, we assume these
methods are procedures. The rule for invokeStartJoin extends the rule for invokespecial
(Section 3.3) to concurrency.

Let P′1, P′2, Q′1 and Q′2 be: P′1
def
= P1[y1/this] ∧ y1 6= null, Q′1

def
= Q1[y1/this],

P′2
def
= P2[y2/this] ∧ y2 6= null, and Q′2

def
= Q2[y2/this]. The rule is defined as

follows:
C1::run : {P1}_{Q1} ∈ Γ C2::run : {P2}_{Q2} ∈ Γ

S • Q′
1 ∗ Q′

2 ⇒ El+1

∆;Γ ;Ψ, (l + 1,El+1) ` {(S, y1, y2) • P′
1 ∗ P′

2} l : invokeStartJoin C1:run C2:run
where C1:run does not modify any variables free in P2,C2:run,Q2, and conversely.

Proof Transformation. The proof translator takes a proof using the Disjoint Concur-
rency rule, and generates a bytecode proof. To translate it, we first extend the definition
of the translation function∇C. This function applies the translation function∇M to all
the methods Mi in a class C, and also uses a new function∇P. The function∇P produces
classes C1 and C2 with a method run for each use of the instruction s1 || s2. The function
∇C is defined as follows:

∇C

(
forall Mi ::∆;Γ ` Mi

∆;Γ ` {P1} class C:D {public M}

)
=

forall Mi ∇M(∆;Γ ` Mi);∇P(∆;Γ ` Mi)

∆;Γ `{P1} class C:D {public M}

The function ∇P generates method proofs only when the Disjoint Concurrency rule
is used. For other rules, this function is applied recursively. The definition of∇P for the
case of the Disjoint Concurrency rule is as follows:

∇P

(
∆;Γ ` {P1} s1 {Q1} ∆;Γ ` {P2} s2 {Q2}

∆;Γ ` {P1 ∗ P2} s1 || s2 {Q1 ∗ Q2}

)
=

b = ∇S(∆;Γ ` {P1} s1 {Q1}) (Bytecode body verification)

∆;Γ ` public C1.run(p1) dynamic {P1}_{Q1} static {P1}_{Q1} b

b = ∇S(∆;Γ ` {P2} s2 {Q2}) (Bytecode body verification)

∆;Γ ` public C2.run(p2) dynamic {P2}_{Q2} static {P2}_{Q2} b

13

The translation function ∇S is extended to handle concurrency; the translation first
creates two objects of type C1 and C2, and then applies the invokeStartJoin rule. The
translation is:

∇S

(
∆;Γ ` {P1} s1 {Q1} ∆;Γ ` {P2} s2 {Q2}

∆;Γ ` {P1 ∗ P2} s1 || s2 {Q1 ∗ Q2}

)
=

∆;Γ ;Ψ1 ` {ε • P1 ∗ P2} LA : newobj C1

∆;Γ ;Ψ2 ` {y1 • P1 ∗ P2} LB : newobj C2

C1:: run : {P1}_{Q1} ∈ Γ C2:: run : {P2}_{Q2} ∈ Γ
(y1, y2) • Q′

1 ∗ Q′
2 ⇒ ELC+1

∆;Γ ;Ψ3 `
{
(y1, y2) • P′

1 ∗ P′
2

}
LC : invokeStartJoin C1:run C2:run

where P′
1

def
= P1[y1/this] ∧ y1 6= null P′

2
def
= P2[y2/this] ∧ y2 6= null

Q′
1

def
= Q1[y1/this] Q′

2
def
= Q2[y2/this]

y1 and y2 are fresh objects of type C1 and C2 resp.,
and Ψ1, Ψ2, Ψ3 only contain the labels relevant to the instructions at LA, LB, LC resp.

5.2 Critical Regions

Critical Regions in the Source Logic. To access a resource in a critical region,
O’Hearn’s work [19] uses a statement with r do s. This statement can be imple-
mented in Java using synchronized statements. O’Hearn’s rule, adapted to Java, is
defined as follows:

∆;Γ ` {P ∗ RIr} s1 {Q ∗ RIr}
∆;Γ ` {P} synchronized (r) s1 {Q}

where no other process modifies
variables free in P or Q.

In this rule, the code in the critical region can see the state RIr associated with the
resource r. However, outside this region, reasoning proceeds without this knowledge.
The state RIr is called resource invariant; it is fixed for each resource r.
Critical Regions for the Bytecode Logic. To model critical regions, Java Bytecode
provides two instructions: monitorenter and monitorexit to entering and leaving a
critical region. To simplify the semantics and the proof transformation, we assume these
instructions take a given resource r as argument (in Java Bytecode, these resources are
pushed onto the stack). The rules for these instructions are defined as follows:

S • P ∗ RIr ⇒ El+1

∆;Γ ;Ψ,(l+1,El+1) ` {S • P} l : monitorenter r

S • Q⇒ El+1

∆;Γ ;Ψ,(l+1,El+1) ` {S • Q ∗ RIr} l : monitorexit r

The first rule adds the resource invariant RIr to the precondition P; the second rule
removes this resource invariant from the precondition S • Q ∗ RIr.

14

Proof Transformation. The translation of critical regions uses the bytecode instructions
monitorenter and monitorexit. The translation is:

∇S

(
∆;Γ ` {P ∗ RIr} s1 {Q ∗ RIr}

∆;Γ ` {P} synchronized (r) s1 {Q}

)
=

∆;Γ ;Ψ1 ` {ε • P} LA : monitorenter r
∇S(∆;Γ ` {P ∗ RIr} s1 {Q ∗ RIr})

∆;Γ ;Ψ2 ` {ε • Q ∗ RIr} LB : monitorexit r

where Ψ1 and Ψ2 only contain the labels relevant to the instructions at labels
LA and LB respectively.

To check the validity of the translation, we need to show the validity of each generated
instruction. Since the precondition of the first instruction of s1 is P ∗ RIr, then the
instruction monitorenter is valid because P ∗ RIr ⇒ P ∗ RIr. The postcondition of s1 is
Q ∗ RIr, which is the precondition of monitorexit. By the definition of monitorexit, we
need to show Q implies the postcondition of s1, which is Q. Therefore, the translation is
valid.

6 Example

This section presents an example of the application of the proof transformation.
Our proof translation takes the proof of the cell example (Figure 1), and produces

a bytecode proof. The source proof consist of the proof for the classes Cell and Recell
where each proof contains the proof of their methods. The proof translation is performed
in two steps. In the first step, the rules for classes and method specifications are translated
using the functions ∇C and ∇M . In the second step, the method bodies are translated
using the function ∇S. This function takes the proof of Figure 1b, and produces the
bytecode proof of Figure 2 .

The static and dynamic specifications, highlighted in Figure 2, express the same
properties as in the source program. The body of the method consists of a sequence of
precondition, label, and instruction. Bytecode preconditions are pairs S • P where S is
a list of expressions representing the stack, and P is a formula in separation logic. For
example, the precondition at label 03 expresses that the object this is on the top of the
stack and that the property Val(this, v) ∗ this.bak 7→ _ holds. The stack grows to the right,
e.g. in (this, x) the top element is x; we denote the empty stack with ε. The translation
function∇S first applies the Open axiom generating the bytecode proof at label 01. Then,
the triple for the assignment bak=super.get() is translated, producing the proof at labels
02−05. Then, the triple for the method invocation super.set(x); is translated producing
the proof at labels 05−07. Finally, the Close axiom is translated producing the proof at
label 09. The last instruction of the proof is the return instruction.

7 Soundness of the Proof-Transforming Compiler

In this section, we present the soundness theorems for the proof-transforming com-
piler. Soundness informally means that the translation produces valid bytecode proofs.

15

public override void set (int x)

dynamic {Val(this, v, _)} _ {Val(this, x, v)}
static {this.val 7→ v} _ {this.val 7→ x ∗ this.bak 7→ v}
{ ε • ValRecell(this, v, _)} 01: nop
{ ε • ValCell(this, v) ∗ this.bak 7→ _ } 02: push this
{ this • ValCell(this, v) ∗ this.bak 7→ _ } 03: invokespecial Cell :get
{ ret′ • ValCell(this, v) ∗ this.bak 7→ _ ∗ ret′ = v} 04: push this
{ (ret′, this) • ValCell(this, v) ∗ this.bak 7→ _ ∗ ret′ = v} 05: putfld bak
{ ε • ValCell(this, v) ∗ this.bak 7→ v } 06: push this
{ this • ValCell(this, v) ∗ this.bak 7→ v } 07: push x
{ (this, x) • ValCell(this, v) ∗ this.bak 7→ v } 08: invokespecial Cell :set
{ ε • ValCell(this, x) ∗ this.bak 7→ v } 09: nop
{ ε • ValRecell(this, x, v)} 10: ret

Fig. 2. Example of the Application of Proof-Transforming Compilation.

Soundness is defined with three theorems for the translation of classes, methods, and
instructions. The proofs can be found in our technical report [15].

The following theorem expresses that if the class rule in the source logic is a valid
derivation, then the translation produces a valid derivation in the bytecode logic.

Theorem 1 (Soundness of the Class Translator)

for all Mi in M : ∆;Γ ` Mi

∆;Γ `class C:D {public T f ; M }
⇒ ∇C

(
for all Mi in M : ∆;Γ ` Mi

∆;Γ `class C:D {public T f ; M }

)

The soundness theorem for the method translator expresses that if the proof of the
method m is a valid derivation, then the proof translation produces a valid bytecode
proof. It is defined as follows:

Theorem 2 (Soundness of the Method Translator) Let Tree1 be the derivation tree of
the Method rule. Then,

Tree1

∆;Γ ` public virtual C.m(x)
dynamic {PC}_{QC} static {RC}_{SC} body

⇒

∇M

 Tree1

∆;Γ ` public virtual C.m(x)
dynamic {PC}_{QC} static {RC}_{SC} body


The following theorem, for instruction translation, states that if (1) we have a

valid source proof for the instruction s, and (2) we have a proof translation from the
source proof that produces the instructions Ilstart ...Ilend , and their respective preconditions
Elstart ...Elend , and (3) the postcondition in the source logic implies the next precondition of
the last generated instruction (if the last generated instruction is the last instruction of the
method, we use the postcondition in the source logic), then every bytecode specification
holds:∆;Γ ;Ψ ` {El} l : Il. The theorem is the following:

16

Theorem 3 (Soundness of the Instruction Translator) Let Tree1 be the derivation tree
used to prove the instruction s. Then,

Tree1
∆;Γ ` {P} s {Q}

∧

((Elstart , Ilstart)...(Elend , Ilend)) = ∇S

(
Tree1

∆;Γ ` {P} s {Q}

)
∧(

Q ⇒ Elend+1

)
⇒
∀ l ∈ lstart ... lend : ∆;Γ ;Ψ ` {El} l : Il

The proof runs by induction on the structure of the derivation tree of

Tree1
∆;Γ ` {P} s {Q}

8 Related Work

Bytecode Analysis. Several logics for bytecode have been developed. Stata and Abadi [24]
first introduced a type system for Java bytecode. To verify bytecode with frame properties,
Benton [5] has developed compositional logic for a stack-based abstract machine. The
logic is a separation style logic and uses shifting operations to reindex stack assertions.
Chin et al. [6] also present a heap model for a bytecode language to support separation
logic. Dong et al. [9] develop a modular reasoning technique for low-level intermediate
programs. However, those works do not support object-oriented features. Bannwart and
Müller [1] present a Hoare-style logic for a bytecode language with object-oriented
features similar to the JVM language. Dynamic and static specifications are treated in
their logic, however, their inter-relationship is not considered.

Proof-Transforming Compilation. There has been several works on proof-transforming
compilation [1,3,12,18,23]. The closest related work to our proof-transforming compiler
are the works by Barthe et al. [4,3] on proof preserving compilation. They prove the
preservation of proof obligations from Java programs to JVM programs; thus, they show
that if the certificate proves the verification condition in the source, then this certificate
can be used to prove the verification condition in the bytecode. Our bytecode logic and
proof transformation can handle more complex examples that those works cannot; for
example, programs using mutable data structures such as the programs proven by Diste-
fano et al. [8], which include the factory, observer, and visitor patterns. The limitation
on those works is given by the techniques used to verify the source program. Our work
introduces a bycode logic using separation logic and its proof transformation, which
makes possible to translate the proofs of programs using mutable data structures.

Kunz [10] presents proof preserving compilation for concurrent programs using
an Owicki/Gries-like proof system. Our work handles non-interference and concurrent
programs using separation logic.

Compared to our earlier effort on proof transformation [18,12,17], this work has a
cleaner treatment of the stack, develops a more powerful bytecode logic, uses a different

17

and more powerful source code proof system, and supports concurrency. Barthe [2] et
al. implemented an infrastructure for Proof Carrying Code (PCC). Our current imple-
mentation [14] of the PCC infrastructure consist of proof transforming compiler for a
Hoare-style logic, and a proof checker formalized in Isabelle. As future work, we plan
to extend this implementation to handle separation logic.

9 Conclusions

We have developed a separation logic for bytecode; the logic adapts Parkinson and Bier-
man’s work on abstract predicates [21] for bytecode. We also present proof transforming
compilation from a separation logic for object-oriented programs to our bytecode logic.
The bytecode logic and the proof transformation are sound. To prove soundness of the
proof translation, we show that the translation of a valid source proof yields a valid
bytecode proof. The proofs can be found in our technical report [15]. The use of a
separation logic for bytecode allows us to translate more complex source proofs that
previous works cannot handle, for example, programs using mutable data structures. The
results show that the proof transformation can be extended to handle proofs of concurrent
programs.

Acknowledgements We thank Stephan van Staden, Sebastian Nanz, Scott West, and Mei
Tang for their insightful comments on drafts of this paper. The research leading to these
results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no.
291389.

References

1. F. Y. Bannwart and P. Müller. A Program Logic for Bytecode. In F. Spoto, editor, BYTECODE,
volume 141(1) of ENTCS, pages 255–273. Elsevier, 2005.

2. G. Barthe, P. Crégut, B. Grégoire, T. Jensen, and D. Pichardie. Formal methods for components
and objects. chapter The MOBIUS Proof Carrying Code Infrastructure, pages 1–24. Springer-
Verlag, Berlin, Heidelberg, 2008.

3. G. Barthe, B. Grégoire, and M. Pavlova. Preservation of Proof Obligations from Java to the
Java Virtual Machine. In IJCAR, pages 83–99. Springer, 2008.

4. G. Barthe, T. Rezk, and A. Saabas. Proof obligations preserving compilation. In Third
International Workshop on Formal Aspects in Security and Trust, Newcastle, UK, pages
112–126, 2005.

5. N. Benton. A typed, compositional logic for a stack-based abstract machine. In APLAS ’05,
volume 3780 of LNCS, 2005.

6. W. Chin, C. David, H. Nguyen, and S. Qin. Enhancing modular OO verification with
separation logic. In POPL ’08, ACM, pages 87–99, 2008.

7. D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and
effect. In OOPSLA ’02, volume 37. ACM Press, 2002.

8. D. Distefano and M. J. Parkinson. jStar: Towards Practical Verification for Java. In OOPSLA
’08, pages 213–226, 2008.

9. Y. Dong, S. Wang, L. Zhang, and P. Yang. Modular certification of low-level intermediate
representation programs. In ICSAC, pages 563–570. IEEE Computer Society, 2009.

18

10. C. Kunz. Certificate translation for the verification of concurrent programs. In Proceedings of
TGC’10, pages 237–252. Springer-Verlag, 2010.

11. X. Leroy. Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In POPL ’06, volume 41, pages 42–54. ACM, 2006.

12. P. Müller and M. Nordio. Proof-Transforming Compilation of Programs with Abrupt Termi-
nation. In SAVCBS ’07, pages 39–46, 2007.

13. G. Necula. Compiling with Proofs. PhD thesis, School of Computer Science, Carnegie Mellon
University, 1998.

14. M. Nordio. Proofs and Proof Transformations for Object-Oriented Programs. PhD thesis,
ETH Zurich, 2009.

15. M. Nordio, C. Calcagno, and B. Meyer. Certificates and separation logic. Technical report,
ETH Zurich, 2013.

16. M. Nordio, C. Calcagno, P. Müller, and B. Meyer. A Sound and Complete Program Logic
for Eiffel. In M. Oriol, editor, TOOLS-EUROPE 2009, volume 33 of LNBIP, pages 195–214,
2009.

17. M. Nordio, P. Müller, and B. Meyer. Formalizing Proof-Transforming Compilation of Eiffel
programs. Technical Report 587, ETH Zurich, 2008.

18. M. Nordio, P. Müller, and B. Meyer. Proof-Transforming Compilation of Eiffel Programs. In
TOOLS-EUROPE, LNBIP, pages 316–335. Springer, 2008.

19. P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375:271–
307, 2007.

20. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In POPL ’04,
ACM, pages 268–280, 2004.

21. M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and inheritance. In
POPL ’08, pages 75–86. ACM, 2008.

22. A. Pnueli, M. Siegel, and E. Singerman. Translation Validation. In TACAS ’98, pages 151–166.
Springer-Verlag, 1998.

23. A. Saabas and T. Uustalu. Program and proof optimizations with type systems. Journal of
Logic and Algebraic Programming, 77(1–2):131–154, 2008.

24. R. Stata and M. Abadi. A type system for Java bytecode subroutines. In POPL ’98, pages
149–160. ACM, 1998.

19

A Soundness of the Bytecode Logic

In this section, we present the soundness theorems of the bytecode logic. First, we define
the operational semantic of the bytecode language, and then we present the theorems.
The soundness proofs can be found in our technical report [15].

A.1 Operational Semantics

The transitions of the operational semantics have the form

〈p; s, σ, h, l〉 → 〈s′, σ′, h′, l′〉 | fault

where s, s′ are stacks, σ, σ′ are stores, and h, h′ are heaps. The transition 〈p; s, σ, h, l〉 →
〈s′, σ′, h′, l′〉 expresses that, executing a instruction Il of the program body p at the loca-
tion l with the stack s, the store σ, and the heap h produces the configuration 〈s′, σ′, h′, l′〉.
For a given method body p, the multistep relation→∗ is the reflexive transitive closure
of→.

Figure 3 shows the semantics for all the instructions except method invocation. The
rule for the instruction pop x removes the top element of the stack and assigns it to x;
push v puts the value v on top of the stack; goto transfers control the program point
l′; nop has no effect; brtrue transfers control to the label l′ if the top of the stack is
true removing this value from the stack; if the value is false, it is removed and control
continues in the next instruction; The instruction putfld f updates the field f . If the
instructions pop, brtrue, and putfld are applied with an empty stack, the transition yields
the state fault. If putfld is applied with a stack with one element, the transition also
yields the state fault.

〈l : pop x; (s, v), σ, h, l〉 → 〈s, σ[x := v], h, l + 1〉
〈l : push v; s, σ, h, l〉 → 〈(s, v), σ, h, l + 1〉
〈l : goto l′; s, σ, h, l〉 → 〈s, σ, h, l′〉
〈l : nop; s, σ, h, l〉 → 〈s, σ, h, l + 1〉
〈l : brtrue l′; (s, true), σ, h, l〉 → 〈s, σ, h, l′〉
〈l : brtrue l′; (s, false), σ, h, l〉 → 〈s, σ, h, l + 1〉
〈l : putfld f ; (s, x, v), σ, h, l〉 → 〈s, σ, h[h(σ(x)).f := v], l + 1〉 when σ(x).f ∈ dom(h)
〈l : newobj C; s, σ, h, l〉 → 〈((s, y), σ, h[y/this], l + 1〉
〈l : s; ε, σ, h, l〉 → fault when s = pop, brtrue l′, or putfld f
〈l : s; v, σ, h, l〉 → fault when s = putfld f

Fig. 3. Operational Semantics for the Basic Bytecode Instructions.

The Java Bytecode instruction invokespecial is used to call (1) private methods, and
(2) super methods (invocations using super in Java). The rule is defined as follows:

y 6= null
〈body; s, σ[this := y, p := z], h, l1〉 →∗ 〈s′, σ′, h′, l′〉

〈l : invokespecial C::m; (s, y, z), σ, h, l〉 → 〈(s, σ′(ret)), σ′, h′, l + 1〉

20

This rule assumes that the target object and the arguments are already on the stack.
First, the arguments and the current object are updated, and then the body of the method
is executed producing the configuration 〈s′, σ′, h′, l′〉. The configuration of the method
invocation is updated with the result of the method m, and the program counter is
increased. If the instruction invokespecial is invoked with a stack that does not contain
the target object and the arguments, the operational semantics produces fault.

A.2 Soundness Theorems

In this section, we define soundness of the bytecode logic. First, we introduce the seman-
tics for Hoare triples in bytecode, and the semantics for instruction specifications. Then,
we define soundness for bytecode instructions and soundness for method specifications
in bytecode.

The following definition, taken from Parkinson and Bierman [21], gives semantics
of abstract predicates. The step index n is used to deal with mutual recursion in method
definitions.

Definition 2 (Abstract Predicates).

for all Λ : Preds→ (Vals∗ → P(Σ)) , Λ |=n {P} p {Q} iff
∀m ≤ n :
for all s, σ, h |= {P} : 〈p; s, σ, h, l〉9∗ fault, and
〈p; s, σ, h, l〉 →m 〈s′, σ′, h′, l′〉 then
s′, σ′, h′ |= Q

Following, we define the semantics of Hoare triples. This definition expresses that
for all interpretations satisfying the abstract predicate definition in ∆, and assuming all
the methods executed for at most n steps meet their specifications in Γ , then {P} p {Q}
is satisfied for at least n + 1 steps.

Definition 3 (Hoare Triples |=).

∆;Γ |= {P} p {Q} iff :
for all Λ and n, if Λ |= ∆ and Λ |=n Γ, then
Λ |=n+1 {P} p {Q}.

The semantics for the instruction specification ∆;Γ ;Ψ |= {S • P} l : inst is defined
as follows:

Definition 4 (Instructions Specifications |=).

∆;Γ ;Ψ |= {S • P} l : inst iff :
for all s, σ, h |= (S • P), and 〈l : inst; s, σ, h, l〉9 fault, and
〈l : inst; s, σ, h, l〉 → 〈s′, σ′, h′, l′〉 then
s′, σ′, h′ |= Ψ(l′)

The semantics for the method C.m with the dynamic specification {PC}_{QC} , the
static specification {RC}_{SC}, and body b is defined as follows:

21

Definition 5 (Methods |=).

∆;Γ |= public C.m(x) dynamic {PC}_{QC} static {RC}_{SC} b iff :
∆;Γ |= {RC}_{SC} implies ∆;Γ |= {Pc ∗ this : C}_{Qc}
and for all s, σ, h |= RC implies El1
and for all s, σ, h |= Eln implies SC, then
for all inst in b : ∆;Γ ;Ψ |= {S • P} l : inst

Definition 6 (Methods |=).

∆;Γ |= public C.m(x) dynamic {PC}_{QC} static {RC}_{SC} b iff :
∆;Γ |= {RC}_{SC} implies ∆;Γ |= {Pc ∗ this : C}_{Qc}
and for all s, σ, h |= RC : 〈b; s, σ, h, l〉9∗ fault, and
〈b; s, σ, h, l〉 →∗ 〈s′, σ′, h′, l′〉 then
s′, σ′, h′ |= SC

The following theorem defines soundness for bytecode instructions:

Theorem 4 (Soundness for Instructions)

∆;Γ ;Ψ ` {S • P} l : inst implies ∆;Γ ;Ψ |= {S • P} l : inst

Proof. The proof of this theorem runs by induction on the structure of the derivation
tree of ∆;Γ ;Ψ ` {S • P} l : inst. The complete proof is presented in our technical
report [15].

Finally, we define the soundness theorem for method specifications:

Theorem 5 (Soundness for Methods)

∆;Γ ` public C.m(x) dynamic {PC}_{QC} static {RC}_{SC} b
implies
∆;Γ |= public C.m(x) dynamic {PC}_{QC} static {RC}_{SC} b

Proof. By induction on the structure of de derivation tree of C.m(x), and the application
of Theorem 4. The complete proof is presented in our technical report [15].

22

	Certificates and Separation Logic
	Nordio, Calcagno, Meyer, Tang

